找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: fitful
发表于 2025-3-23 11:15:46 | 显示全部楼层
发表于 2025-3-23 17:08:43 | 显示全部楼层
发表于 2025-3-23 20:37:56 | 显示全部楼层
Spectral Theory of the Laplace Operator for Cocompact Groups,is a discrete cocompact group. We already know from the preceding Chapter that —Δ is essentially self-adjoint and positive on the subspace . ⊂ L. (.IH) consisting of all ..-functions . ⋵ ..(.IH) such that Δ. ∈ .. (.IH) . This means that the closure of the graph of Δ in .. (.IH) × .. (.IH) is the graph of a self-adjoint linear operator .
发表于 2025-3-23 23:07:11 | 显示全部楼层
发表于 2025-3-24 05:31:06 | 显示全部楼层
发表于 2025-3-24 08:10:08 | 显示全部楼层
Membrane Models for Circadian Rhythms,nstein series of general cofinite groups by direct number theoretic methods. We shall for example relate the determinant of the scattering matrix to the zeta function of the Hilbert class field of . The control we have over the Eisenstein series will also in turn imply many interesting number theoretic results.
发表于 2025-3-24 12:44:45 | 显示全部楼层
发表于 2025-3-24 15:47:05 | 显示全部楼层
Eisenstein Series for PSL(2) over Imaginary Quadratic Integers,nstein series of general cofinite groups by direct number theoretic methods. We shall for example relate the determinant of the scattering matrix to the zeta function of the Hilbert class field of . The control we have over the Eisenstein series will also in turn imply many interesting number theoretic results.
发表于 2025-3-24 20:46:29 | 显示全部楼层
Integral Binary Hermitian Forms,(1915), (1919a)—(1919e). It contains an interesting error, we correct it in Section 9.6. We also develop a theory of representation numbers of binary hermitian forms which is analogous to the theory of binary quadratic forms as in Landau (1927).
发表于 2025-3-24 23:20:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-23 02:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表