找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: deliberate
发表于 2025-3-25 07:14:22 | 显示全部楼层
https://doi.org/10.1007/978-3-662-25201-7o nonlinear evolution equations, we pass to the most recent applications to equations in 1+1 and 3+1 space-time dimensions, In particular the proof of existence of global solutions to the coupled Maxwell-Dirac equations is briefly outlined.
发表于 2025-3-25 07:53:44 | 显示全部楼层
https://doi.org/10.1007/978-3-662-56080-8 1, 2, 3, arbitrary-dimensional cases as well as to other examples directly and simply connected with the harmonic context. We study their dynamical and kinematical (super)symmetries and their inclusions are mentioned.
发表于 2025-3-25 14:41:01 | 显示全部楼层
发表于 2025-3-25 15:52:27 | 显示全部楼层
Recent developments in non linear representations and evolution equations,o nonlinear evolution equations, we pass to the most recent applications to equations in 1+1 and 3+1 space-time dimensions, In particular the proof of existence of global solutions to the coupled Maxwell-Dirac equations is briefly outlined.
发表于 2025-3-25 22:13:07 | 显示全部楼层
发表于 2025-3-26 01:15:23 | 显示全部楼层
Algebraic expressions for classes of generalized 6-, and 9-, symbols for certain Lie groups,Several methods are described for finding formulas for multiplicity-free 6-. and 9-. symbols, including generalizations of Schwinger‘s generating functions. The recent method of Cerkaski for finding a class of 6-. symbols with one multiplicity index is illustrated with an example for Sp(6).
发表于 2025-3-26 05:00:06 | 显示全部楼层
Constrained lagrangians in N = 2-superspace formulations for the constant magnetic field system,so-called standard and spin orbit coupling supersymmetrization procedures respectively and deal with chiral-type constraints. Our simple change of variables connecting the two-dimensional harmonic oscillator and the constant magnetic field contexts does also work in these superspace formulations.
发表于 2025-3-26 10:01:02 | 显示全部楼层
发表于 2025-3-26 14:19:02 | 显示全部楼层
发表于 2025-3-26 20:18:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 18:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表