找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: 监督
发表于 2025-3-26 21:39:47 | 显示全部楼层
发表于 2025-3-27 04:21:25 | 显示全部楼层
Algorithms for Group Recommendationcally, we focus on collaborative filtering, content-based filtering, constraint-based, critiquing-based, and hybrid recommendation. Throughout this chapter, we differentiate between (1) . and (2) . as basic strategies for aggregating the preferences of individual group members.
发表于 2025-3-27 07:29:14 | 显示全部楼层
Evaluating Group Recommender Systemstechniques for group recommender systems are often the same or similar to those that are used for single user recommenders. We show how to apply these techniques on the basis of examples and introduce evaluation approaches that are specifically useful in group recommendation scenarios.
发表于 2025-3-27 13:15:36 | 显示全部楼层
发表于 2025-3-27 15:50:40 | 显示全部楼层
发表于 2025-3-27 18:33:01 | 显示全部楼层
Explanations for Groupsrs of recommender systems want to convince users to purchase specific items. Users should better understand how the recommender system works and why a specific item has been recommended. Users should also develop a more in-depth understanding of the item domain. Consequently, explanations are design
发表于 2025-3-27 22:56:54 | 显示全部楼层
发表于 2025-3-28 04:01:00 | 显示全部楼层
Biases in Group Decisionsigh-quality decisions. In this chapter, we provide an overview of . and show possibilities to counteract these. The overview includes (1) biases that exist in both single user and group decision making (decoy effects, serial position effects, framing, and anchoring) and (2) biases that especially oc
发表于 2025-3-28 07:39:51 | 显示全部楼层
发表于 2025-3-28 12:57:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 00:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表