找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: Strategy
发表于 2025-3-23 10:47:45 | 显示全部楼层
发表于 2025-3-23 15:33:14 | 显示全部楼层
Preliminaries,In this chapter we introduce basic objects and fix some of our notation and terminology.
发表于 2025-3-23 21:53:14 | 显示全部楼层
发表于 2025-3-24 00:22:04 | 显示全部楼层
发表于 2025-3-24 05:34:54 | 显示全部楼层
The squeezing theorem,zing theorem. Already proved in [Gr], it is among the first applications of pseudo-holomorphic curves at all. Gromov’s proof of this result is based on an existence result for pseudo-holomorphic curves using methods from global analysis and Fredholm theory. It is far beyond the scope of this book to present these methods.
发表于 2025-3-24 06:33:41 | 显示全部楼层
发表于 2025-3-24 14:44:04 | 显示全部楼层
发表于 2025-3-24 16:24:32 | 显示全部楼层
Hyperbolic surfaces,g the pairs of pants decomposition, one gets, roughly speaking, a parametrization of the space of hyperbolic structures on such a surface which coincides with the space of its complex structures. The thick-thin decomposition gives a classification of the thin parts of a hyperbolic surface, which are
发表于 2025-3-24 22:59:31 | 显示全部楼层
The squeezing theorem,zing theorem. Already proved in [Gr], it is among the first applications of pseudo-holomorphic curves at all. Gromov’s proof of this result is based on an existence result for pseudo-holomorphic curves using methods from global analysis and Fredholm theory. It is far beyond the scope of this book to
发表于 2025-3-25 02:29:02 | 显示全部楼层
,Das Konfliktgespräch: Wie lösen wir es?,Gromov-Schwarz lemma is a generalization of the classical Schwarz lemma from complex analysis which states that for any holomorphic map . from the open unit disc in ℂ into itself with . (0). 0 its derivative at 0 is bounded from above by one. For any compact .-holomorphic curve . : . → (.) in a comp
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 13:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表