找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: 叛乱分子
发表于 2025-3-30 11:24:04 | 显示全部楼层
Modelling and Simulation of Speed Guidance of Multi-Intersection in a Connected Vehicle Environmentvehicles’ delay or stopping time in the environment of connected vehicles. Using the vehicle’s position, speed, and real-time traffic signal information (signal light’s color and its’ remaining time) obtained by communication of infrastructure to connected vehicle, speed advisory system can produce
发表于 2025-3-30 13:51:38 | 显示全部楼层
Pattern Mining and Predictive Inference on Short-Term Weather and Collision Time Series Data,onal highway network, are highly random and fiercely fluctuated. The descriptive and inferential analyses for this type of short-term collision time series data, abbreviated as SCTS data in this paper, are still not well-established yet. This paper is to tackle this issue by a newly emerging approac
发表于 2025-3-30 16:31:24 | 显示全部楼层
发表于 2025-3-30 22:29:56 | 显示全部楼层
发表于 2025-3-31 03:01:53 | 显示全部楼层
发表于 2025-3-31 06:57:05 | 显示全部楼层
An Agent-Based Cellular Automata Model for Urban Road Traffic Flow Considering Connected and Automaded period, urban roads will be in a mixed traffic flow scene where CAVs and human-driven vehicles (HDVs) coexist. This paper uses an agent-based cellular automata model to establish a micro-traffic simulation framework for urban roads, called the ABCA-MS model. Considering the characteristics of th
发表于 2025-3-31 12:41:15 | 显示全部楼层
发表于 2025-3-31 14:27:37 | 显示全部楼层
Research on Investment Benefits Valuation Methods for Information Construction of Integrated Passento improve the integration level of regional transportation and the quality of passenger travel service. However, Our country is currently in a period of economic structural adjustment, financial constraints, limited financial support for the informatization construction of integrated passenger tran
发表于 2025-3-31 20:03:55 | 显示全部楼层
Learning Individual Travel Pattern by Using Large-Scale Mobile Location Data with Deep Learning,tween mobile location data and individual travel patterns. This paper proposes a novel deep learning framework to extract individual travel patterns by using large-scale mobile location data. The proposed framework includes methods for extracting origin and destination points based on spatiotemporal
发表于 2025-3-31 23:30:58 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 07:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表