找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: 搭话
发表于 2025-3-23 10:35:04 | 显示全部楼层
Twisted Duality, Cycle Family Graphs, and Embedded Graph Equivalence,ality? (2) How is a hierarchy of graph equivalences captured by a hierarchy of twisted dualities? We construct cycle family graphs and show that they fully characterise all twisted duals with a given (abstract) medial graph, and use this to answer Question 1. For Question 2, we give a hierarchy of g
发表于 2025-3-23 15:12:34 | 显示全部楼层
Interactions with Graph Polynomials,n with the topological transition polynomial of Ellis-Monaghan and Moffatt (Trans. Amer. Math. Soc., ., 1529–1569, 2012), which interacts with twisted duality in a particularly natural way, leading to a generalised duality identity, and a three term contraction-deletion relation. The topological tra
发表于 2025-3-23 21:25:40 | 显示全部楼层
发表于 2025-3-23 23:53:41 | 显示全部楼层
发表于 2025-3-24 03:30:48 | 显示全部楼层
https://doi.org/10.1007/978-3-658-07627-6ving that Petriality and geometric duality result from local operations on each edge of an embedded graph. These local operations applied to subsets of the edge set result in partial Petrality and partial duality. We provide constructions for partial duals and partial Petrials in various realisation
发表于 2025-3-24 08:55:26 | 显示全部楼层
发表于 2025-3-24 13:05:29 | 显示全部楼层
https://doi.org/10.1007/978-3-658-09911-4n with the topological transition polynomial of Ellis-Monaghan and Moffatt (Trans. Amer. Math. Soc., ., 1529–1569, 2012), which interacts with twisted duality in a particularly natural way, leading to a generalised duality identity, and a three term contraction-deletion relation. The topological tra
发表于 2025-3-24 16:38:53 | 显示全部楼层
发表于 2025-3-24 19:00:42 | 显示全部楼层
https://doi.org/10.1007/978-3-642-34775-7ned rotation systems. It covers Petrie duals, geometric duals, medial graphs and Tait graphs; and the relations among them. These definitions and relations motivate much of the work presented later in the monograph.
发表于 2025-3-25 02:13:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 11:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表