找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
查看: 50387|回复: 52
发表于 2025-3-21 16:15:35 | 显示全部楼层 |阅读模式
书目名称Graphs and Order
编辑Ivan Rival
视频video
丛书名称Nato Science Series C:
图书封面Titlebook: ;
出版日期Book 1985
版次1
doihttps://doi.org/10.1007/978-94-009-5315-4
isbn_softcover978-94-010-8848-0
isbn_ebook978-94-009-5315-4Series ISSN 1389-2185
issn_series 1389-2185
The information of publication is updating

书目名称Graphs and Order影响因子(影响力)




书目名称Graphs and Order影响因子(影响力)学科排名




书目名称Graphs and Order网络公开度




书目名称Graphs and Order网络公开度学科排名




书目名称Graphs and Order被引频次




书目名称Graphs and Order被引频次学科排名




书目名称Graphs and Order年度引用




书目名称Graphs and Order年度引用学科排名




书目名称Graphs and Order读者反馈




书目名称Graphs and Order读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:12:18 | 显示全部楼层
https://doi.org/10.1007/978-94-015-2514-5ϕ (.) ≠ ϕ (.). Now the question: is . recursively .-colorable? I.e., is there a recursive .-coloring ϕ of.? If not, is there some . for which there is a recursive .-coloring of.? More generally, what conditions can be imposed on a recursive .-colorable graph which will guarantee that it is recursively .-colorable?
发表于 2025-3-22 03:08:00 | 显示全部楼层
发表于 2025-3-22 05:27:08 | 显示全部楼层
发表于 2025-3-22 09:02:39 | 显示全部楼层
发表于 2025-3-22 15:14:03 | 显示全部楼层
发表于 2025-3-22 17:57:45 | 显示全部楼层
https://doi.org/10.1007/978-3-658-17524-5 graph, if we consider a partition of the vertex-set into paths μ1, μ2,… which minimizes.we get interesting properties (exactly as in the theorem of Greene and Kleitman about.-saturated chain-partitions of a poset)..In this paper, we survey various results in that direction.
发表于 2025-3-22 21:13:38 | 显示全部楼层
发表于 2025-3-23 01:37:14 | 显示全部楼层
发表于 2025-3-23 07:19:06 | 显示全部楼层
Issues in the Theory of Uniqueness in Measurementional theory of measurement. This paper presents an introduction to this theory, with an emphasis on those topics relating to the uniqueness of scales of measurement and with an attempt also to emphasize topics relevant to issues in graph theory or the theory of order relations.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 03:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表