找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: Menthol
发表于 2025-3-23 10:21:52 | 显示全部楼层
发表于 2025-3-23 15:41:00 | 显示全部楼层
发表于 2025-3-23 20:12:12 | 显示全部楼层
A Branch-and-Reduce Algorithm for Finding a Minimum Independent Dominating Set in Graphs,t in a graph is an NP-hard problem. We give an algorithm computing a minimum independent dominating set of a graph on . vertices in time .(1.3575.). Furthermore, we show that Ω(1.3247.) is a lower bound on the worst-case running time of this algorithm.
发表于 2025-3-23 23:07:48 | 显示全部楼层
An Implicit Representation of Chordal Comparabilty Graphs in Linear-Time,parability graph using .(.) integers so that, given two vertices, it can be determined in .(1) time whether they are adjacent, no matter how dense the graph is. We give a linear-time algorithm for finding the four linear orders, improving on their bound of .(. .).
发表于 2025-3-24 05:53:51 | 显示全部楼层
https://doi.org/10.1007/978-1-4615-1203-5t in a graph is an NP-hard problem. We give an algorithm computing a minimum independent dominating set of a graph on . vertices in time .(1.3575.). Furthermore, we show that Ω(1.3247.) is a lower bound on the worst-case running time of this algorithm.
发表于 2025-3-24 08:06:11 | 显示全部楼层
发表于 2025-3-24 11:23:50 | 显示全部楼层
发表于 2025-3-24 18:08:34 | 显示全部楼层
Generalised Dualities and Finite Maximal Antichains,existence of homomorphism. We show that these antichains correspond exactly to the generalised dualities. This solves a problem posed in [1]. Finally, we show that it is NP-hard to decide whether a finite set of digraphs forms a maximal antichain.
发表于 2025-3-24 20:38:24 | 显示全部楼层
发表于 2025-3-25 03:05:02 | 显示全部楼层
Generalised Dualities and Finite Maximal Antichains,termined by a finite number of forbidden subgraphs. We prove that these situations, called ., are characterised by the non-existence of a homomorphism to . from a finite set of forests..Furthermore, we characterise all finite maximal antichains in the partial order of directed graphs ordered by the
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 02:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表