找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: arouse
发表于 2025-3-26 23:54:17 | 显示全部楼层
发表于 2025-3-27 02:00:25 | 显示全部楼层
Georg Müller-Christ,Michael Hülsmanntiplication are recognition of transitive graphs, computing the transitive closure of a directed acyclic graph, and finding the neighborhood containment matrix of a graph. In this paper, we show how to avoid using matrix multiplication for these problems on special classes of graphs. This leads to e
发表于 2025-3-27 07:11:26 | 显示全部楼层
Modernisierung oder Überfremdung?igraph (DAG). The main results in this paper are (n=|V|) :.(1) An O(n* log(n)) approximation algorithm is developed for the minimum-fas-problem on planar digraphs with a worst-case-ratio of 2. In the case of a planar digraph with all embeddings in the plane having at most one clockwise/anticlockwise
发表于 2025-3-27 10:19:26 | 显示全部楼层
发表于 2025-3-27 14:59:46 | 显示全部楼层
https://doi.org/10.1007/978-3-642-59152-5 consists of a set of . interconnecting the terminals belonging to the same (multi-terminal) net. An algorithm, unifying and generalizing previous BSLR algorithms, to solve an arbitrary instance of BSLR, is presented. Problems involving slidable terminals (i.e., when terminals can slide within a cer
发表于 2025-3-27 21:30:44 | 显示全部楼层
https://doi.org/10.1007/978-3-476-04340-5 required vertices and Steiner vertices, GSP asks for a shortest connected subgraph, containing at least one vertex of each group. As the Steiner Problem is NP-hard, GSP is too, and we are interested in approximation algorithms. Efficient approximation algorithms have already been proposed, but noth
发表于 2025-3-27 23:35:51 | 显示全部楼层
发表于 2025-3-28 04:18:43 | 显示全部楼层
https://doi.org/10.1007/978-3-322-88722-1e. the problem of embedding a graph into a grid of minimum area is NP-hard, even for connected (but not necessarily planar) graphs..VLSI circuits (or large parts of them) are typically modelled by . graphs, but Kramer and van Leeuwen used a family of non-planar graphs for their reduction and they po
发表于 2025-3-28 06:38:47 | 显示全部楼层
发表于 2025-3-28 12:55:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 17:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表