找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: DEIFY
发表于 2025-3-23 13:30:39 | 显示全部楼层
On Minimum Connecting Transition Sets in Graphs,cutively in a walk in the graph. In this paper, we look for the smallest set of transitions needed to be able to go from any vertex of the given graph to any other. We prove that this problem is NP-hard and study approximation algorithms. We develop theoretical tools that help to study this problem.
发表于 2025-3-23 14:26:44 | 显示全部楼层
Recognizing Hyperelliptic Graphs in Polynomial Time,aph algorithms and number theory. We consider so-called . (multigraphs of gonality 2) and provide a safe and complete set of reduction rules for such multigraphs, showing that we can recognize hyperelliptic graphs in time ., where . is the number of vertices and . the number of edges of the multigra
发表于 2025-3-23 20:51:14 | 显示全部楼层
发表于 2025-3-24 01:27:36 | 显示全部楼层
,Optimality Program in Segment and String Graphs,is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in . by Fox and Pach [SODA’11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which p
发表于 2025-3-24 05:15:46 | 显示全部楼层
Anagram-Free Chromatic Number Is Not Pathwidth-Bounded,s note, we show that there are planar graphs of pathwidth 3 with arbitrarily large anagram-free chromatic number. More specifically, we describe 2.-vertex planar graphs of pathwidth 3 with anagram-free chromatic number .. We also describe . vertex graphs with pathwidth . having anagram-free chromati
发表于 2025-3-24 08:34:40 | 显示全部楼层
发表于 2025-3-24 14:05:10 | 显示全部楼层
发表于 2025-3-24 15:06:30 | 显示全部楼层
发表于 2025-3-24 22:57:36 | 显示全部楼层
发表于 2025-3-25 00:43:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 13:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表