找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: Hypothesis
发表于 2025-3-28 17:32:16 | 显示全部楼层
发表于 2025-3-28 21:11:08 | 显示全部楼层
Exact and Parameterized Algorithms for ,, with respect to the number of vertices. We also show that its running time is 2.1364... when the goal is to find a spanning tree with at least . internal vertices. Both running time bounds are obtained via a Measure & Conquer analysis, the latter one being a novel use of this kind of analysis for parameterized algorithms.
发表于 2025-3-28 23:54:57 | 显示全部楼层
Parameterized Complexity of Generalized Domination Problems, of size . (and at most .) are W[1]-complete problems (when parameterized by .) for any pair of finite sets . and .. We further present results on dual parametrization by . − ., and results on certain infinite sets (in particular for ., . being the sets of even and odd integers).
发表于 2025-3-29 04:12:43 | 显示全部楼层
An Even Simpler Linear-Time Algorithm for Verifying Minimum Spanning Trees,ath-maxima problem implies a linear-time algorithm for the . problem of determining whether a given spanning tree of a given undirected graph . with real edge weights is a minimum-weight spanning tree of ..
发表于 2025-3-29 09:23:24 | 显示全部楼层
发表于 2025-3-29 12:28:47 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-6603-8 and planar networks, first-order properties can be frugally evaluated, that is, with only a bounded number of messages, of size logarithmic in the number of nodes, sent over each link. Moreover, we show that the result carries over for the extension of first-order logic with unary counting.
发表于 2025-3-29 15:32:52 | 显示全部楼层
发表于 2025-3-29 21:38:03 | 显示全部楼层
发表于 2025-3-30 00:07:21 | 显示全部楼层
发表于 2025-3-30 07:09:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 10:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表