找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
查看: 10318|回复: 39
发表于 2025-3-21 18:54:56 | 显示全部楼层 |阅读模式
书目名称Graph-Based Semi-Supervised Learning
编辑Amarnag Subramanya,Partha Pratim Talukdar
视频video
丛书名称Synthesis Lectures on Artificial Intelligence and Machine Learning
图书封面Titlebook: ;
出版日期Book 2014
版次1
doihttps://doi.org/10.1007/978-3-031-01571-7
isbn_softcover978-3-031-00443-8
isbn_ebook978-3-031-01571-7Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
The information of publication is updating

书目名称Graph-Based Semi-Supervised Learning影响因子(影响力)




书目名称Graph-Based Semi-Supervised Learning影响因子(影响力)学科排名




书目名称Graph-Based Semi-Supervised Learning网络公开度




书目名称Graph-Based Semi-Supervised Learning网络公开度学科排名




书目名称Graph-Based Semi-Supervised Learning被引频次




书目名称Graph-Based Semi-Supervised Learning被引频次学科排名




书目名称Graph-Based Semi-Supervised Learning年度引用




书目名称Graph-Based Semi-Supervised Learning年度引用学科排名




书目名称Graph-Based Semi-Supervised Learning读者反馈




书目名称Graph-Based Semi-Supervised Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:06:46 | 显示全部楼层
发表于 2025-3-22 02:53:44 | 显示全部楼层
Graph Construction,if one is not already available) and (b) inferring the labels on the unlabeled samples in the input or estimating the model parameters. While many algorithms have been developed for label inference [Subramanya and Bilmes, 2010, Zhu et al., 2003], until recently, little attention has been paid to the
发表于 2025-3-22 04:38:57 | 显示全部楼层
发表于 2025-3-22 09:04:15 | 显示全部楼层
Scalability,be the focus of this chapter. We first present some algorithms for constructing graphs over a large number of samples followed by inference in a number of parallel architectures including shared-memory symmetric multi-processors (SMPs) and distributed computers.
发表于 2025-3-22 13:36:35 | 显示全部楼层
Applications,ustive enough to duplicate all the experiments and results. Rather, the goal here is to present the different applications and highlight salient aspects. In each case we briefly describe the task, data set, how the graph is constructed, methods used and results. For more details, readers should look
发表于 2025-3-22 17:45:42 | 显示全部楼层
发表于 2025-3-22 21:32:43 | 显示全部楼层
发表于 2025-3-23 01:25:32 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-6047-0des in the graph followed by the process of inferring the labels for the unlabeled nodes. In this chapter, we first examine the design choices involved in this seed labeling process. We then present a number of approaches for label inference. While a majority of the graph-based inference approaches
发表于 2025-3-23 09:16:56 | 显示全部楼层
https://doi.org/10.1007/978-3-030-62351-7be the focus of this chapter. We first present some algorithms for constructing graphs over a large number of samples followed by inference in a number of parallel architectures including shared-memory symmetric multi-processors (SMPs) and distributed computers.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 07:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表