找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: fasten
发表于 2025-3-23 12:25:01 | 显示全部楼层
Circuit Double Covers of Graphs,raph theorists as one of the major open problems in the field. The CDC conjecture, Tutte’s 5-flow conjecture, and the Berge-Fulkerson conjecture are three major snark family conjectures since they are all trivial for 3-edge-colorable cubic graphs and remain widely open for snarks. This chapter is a
发表于 2025-3-23 14:20:56 | 显示全部楼层
发表于 2025-3-23 21:52:15 | 显示全部楼层
发表于 2025-3-24 02:04:14 | 显示全部楼层
发表于 2025-3-24 05:12:19 | 显示全部楼层
发表于 2025-3-24 07:00:26 | 显示全部楼层
发表于 2025-3-24 13:01:23 | 显示全部楼层
https://doi.org/10.1007/978-1-349-12564-7 The most studied property is that of inducing an empty graph–a graph without any edges. Changing the property slightly creates interesting variations. In this paper I will discuss a few of my favorite coloring problems and variations. This discussion is not meant to be comprehensive. The field is s
发表于 2025-3-24 15:28:25 | 显示全部楼层
https://doi.org/10.1007/978-1-349-13431-1g (1) the 1963 Vizing’s Conjecture about the domination number of the Cartesian product of two graphs [47], (2) the 1966 Hedetniemi Conjecture about the chromatic number of the categorical product of two graphs [28], (3) the 1976 Tree Packing Conjecture of Gyárfás and Lehel [23], (4) the 1981 Path P
发表于 2025-3-24 22:52:29 | 显示全部楼层
https://doi.org/10.1007/978-3-642-34249-3 A closer inspection reveals an interesting common feature. Trees and hypercubes can be constructed using a similar sort of expansion procedure. Now, we can introduce a class of graphs that forms a common generalization of trees and hypercubes: it consists of all those graphs that can be constructed
发表于 2025-3-25 02:22:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 21:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表