找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
查看: 50475|回复: 43
发表于 2025-3-21 16:12:05 | 显示全部楼层 |阅读模式
书目名称Graph Representation Learning
编辑William L. Hamilton
视频video
丛书名称Synthesis Lectures on Artificial Intelligence and Machine Learning
图书封面Titlebook: ;
出版日期Book 20201st edition
版次1
doihttps://doi.org/10.1007/978-3-031-01588-5
isbn_softcover978-3-031-00460-5
isbn_ebook978-3-031-01588-5Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
The information of publication is updating

书目名称Graph Representation Learning影响因子(影响力)




书目名称Graph Representation Learning影响因子(影响力)学科排名




书目名称Graph Representation Learning网络公开度




书目名称Graph Representation Learning网络公开度学科排名




书目名称Graph Representation Learning被引频次




书目名称Graph Representation Learning被引频次学科排名




书目名称Graph Representation Learning年度引用




书目名称Graph Representation Learning年度引用学科排名




书目名称Graph Representation Learning读者反馈




书目名称Graph Representation Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:07:02 | 显示全部楼层
https://doi.org/10.1007/978-3-322-84766-9In Chapter 3 we discussed approaches for learning low-dimensional embeddings of nodes. We focused on so-called . approaches, where we learn a unique embedding for each node. In this chapter, we will continue our focus on shallow embedding methods, and we will introduce techniques to deal with multi-relational graphs.
发表于 2025-3-22 04:14:35 | 显示全部楼层
Mikroökonomik im Bachelor-StudiumThe previous parts of this book introduced a wide variety of methods for learning representations of graphs. In this final part of the book, we will discuss a distinct but closely related task: the problem of
发表于 2025-3-22 05:48:13 | 显示全部楼层
发表于 2025-3-22 09:20:01 | 显示全部楼层
Traditional Graph Generation ApproachesThe previous parts of this book introduced a wide variety of methods for learning representations of graphs. In this final part of the book, we will discuss a distinct but closely related task: the problem of
发表于 2025-3-22 13:55:08 | 显示全部楼层
https://doi.org/10.1007/978-3-322-85960-0their graph position and the structure of their local graph neighborhood. In other words, we want to project nodes into a latent space, where geometric relations in this latent space correspond to relationships (e.g., edges) in the original graph or network [Hoff et al., 2002] (Figure 3.1).
发表于 2025-3-22 18:06:22 | 显示全部楼层
发表于 2025-3-23 00:22:10 | 显示全部楼层
https://doi.org/10.1007/978-3-658-41287-6on of objects (i.e., nodes), along with a set of interactions (i.e., edges) between pairs of these objects. For example, to encode a social network as a graph we might use nodes to represent individuals and use edges to represent that two individuals are friends (Figure 1.1). In the biological domai
发表于 2025-3-23 02:41:49 | 显示全部楼层
发表于 2025-3-23 05:49:45 | 显示全部楼层
https://doi.org/10.1007/978-3-322-83428-7nt works arising in this area, and I expect a proper overview of graph representation learning will never be truly complete for many years to come. My hope is that these chapters provide a sufficient foundation and overview for those who are interested in becoming practitioners of these techniques o
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-28 02:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表