找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: Clique
发表于 2025-3-25 03:54:57 | 显示全部楼层
https://doi.org/10.1007/978-3-322-85959-4r parcellation approaches rely on accurate registration between an atlas and the tractograms of an individual, however, due to large individual differences, accurate registration is hard to guarantee in practice. To resolve this issue, we propose a novel deep learning method, called DeepBundle, for
发表于 2025-3-25 07:41:23 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-9214-6 information can be used to improve diagnosis. The heterogeneity of depression suggests that diverse circuit-level abnormalities in individuals lead to various symptoms. Investigating heterogeneous depression is crucial to understand disease mechanisms and provide personalised medicine. Dynamical fu
发表于 2025-3-25 14:43:23 | 显示全部楼层
发表于 2025-3-25 19:01:39 | 显示全部楼层
https://doi.org/10.1007/978-3-322-80069-5grating patch level information into the whole image level prediction. Also, it is often difficult to obtain sufficient high-quality patch labels such as pixel-wise segmentation masks. Benefiting from the recent development of Graph-CNN (GCN), we propose a new weakly- and semi-supervised GCN archite
发表于 2025-3-25 20:56:47 | 显示全部楼层
发表于 2025-3-26 01:12:01 | 显示全部楼层
发表于 2025-3-26 07:56:12 | 显示全部楼层
发表于 2025-3-26 08:42:24 | 显示全部楼层
Versicherung und Risikoforschungdy, a novel superpixel based graph modeling technique is proposed to extract texture features from the computer identified suspicious regions of mammograms. Graph models are constructed from specific structured superpixel patterns and used to generate feature vectors used for classifications of regi
发表于 2025-3-26 14:06:27 | 显示全部楼层
https://doi.org/10.1007/978-3-658-02654-7move redundant information in resting-state functional magnetic resonance imaging (rs-fMRI) data via the brain functional connectivity network (BFCN) and retain good biological characteristics, it is an important method for OCD analysis. However, most existing methods ignore the relationship among s
发表于 2025-3-26 19:54:29 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 23:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表