找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
查看: 13661|回复: 38
发表于 2025-3-21 19:46:04 | 显示全部楼层 |阅读模式
书目名称Graph Learning for Fashion Compatibility Modeling
编辑Weili Guan,Xuemeng Song,Liqiang Nie
视频video
丛书名称Synthesis Lectures on Information Concepts, Retrieval, and Services
图书封面Titlebook: ;
出版日期Book 20222nd edition
版次2
doihttps://doi.org/10.1007/978-3-031-18817-6
isbn_softcover978-3-031-18819-0
isbn_ebook978-3-031-18817-6Series ISSN 1947-945X Series E-ISSN 1947-9468
issn_series 1947-945X
The information of publication is updating

书目名称Graph Learning for Fashion Compatibility Modeling影响因子(影响力)




书目名称Graph Learning for Fashion Compatibility Modeling影响因子(影响力)学科排名




书目名称Graph Learning for Fashion Compatibility Modeling网络公开度




书目名称Graph Learning for Fashion Compatibility Modeling网络公开度学科排名




书目名称Graph Learning for Fashion Compatibility Modeling被引频次




书目名称Graph Learning for Fashion Compatibility Modeling被引频次学科排名




书目名称Graph Learning for Fashion Compatibility Modeling年度引用




书目名称Graph Learning for Fashion Compatibility Modeling年度引用学科排名




书目名称Graph Learning for Fashion Compatibility Modeling读者反馈




书目名称Graph Learning for Fashion Compatibility Modeling读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:58:28 | 显示全部楼层
Research Frontiers,ond these two methods that focus on the coarse-grained compatibility modeling, we then devised an unsupervised disentangled graph learning method to uncover the hidden factors affecting the overall compatibility and fulfill the fine-grained compatibility modeling. Moreover, to fully utilize item-att
发表于 2025-3-22 01:42:43 | 显示全部楼层
https://doi.org/10.1007/978-3-322-87780-2ond these two methods that focus on the coarse-grained compatibility modeling, we then devised an unsupervised disentangled graph learning method to uncover the hidden factors affecting the overall compatibility and fulfill the fine-grained compatibility modeling. Moreover, to fully utilize item-att
发表于 2025-3-22 06:53:33 | 显示全部楼层
发表于 2025-3-22 10:22:40 | 显示全部楼层
Correlation-Oriented Graph Learning for OCM,arning technique. Existing graph learning-based methods focus on exploring the visual modality of fashion items, and seldom investigate an item’s textual aspect, i.e., the textual description. In fact, textual descriptions of fashion items usually contain key features, which benefit item representat
发表于 2025-3-22 13:14:26 | 显示全部楼层
发表于 2025-3-22 17:33:34 | 显示全部楼层
Unsupervised Disentangled Graph Learning for OCM,he outfit compatibility based on the single latent compatibility space. The outfit compatibility is essentially affected by multiple complementary hidden factors, such as the color, style, shape, and material. Therefore, we argue that previous methods can only achieve the suboptimal solution, as it
发表于 2025-3-23 00:11:56 | 显示全部楼层
发表于 2025-3-23 02:11:16 | 显示全部楼层
,Heterogeneous Graph Learning for Personalized OCM,ndard. In fact, there may be some subjective factors influencing the outfit compatibility evaluation, namely, for the same garment, different users may have different evaluations. In other words, different people usually have different preferences to make their personal ideal outfits, which may be c
发表于 2025-3-23 09:12:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 18:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表