找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: Daidzein
发表于 2025-3-26 21:31:48 | 显示全部楼层
A Logarithmic Bound for Simultaneous Embeddings of Planar Graphsa (crossing-free) straight-line embedding with vertices placed at points of .. A . is a set of planar graphs of the same order with no simultaneous embedding. A well-known open problem from 2007 posed by Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw and Mitchell, asks whether there
发表于 2025-3-27 02:37:11 | 显示全部楼层
发表于 2025-3-27 06:53:01 | 显示全部楼层
Computing Hive Plots: A Combinatorial Frameworkconnecting their respective endpoints. In previous work on hive plots, assignment to an axis and vertex positions on each axis were determined based on selected vertex attributes and the order of axes was prespecified. Here, we present a new framework focusing on combinatorial aspects of these drawi
发表于 2025-3-27 10:56:25 | 显示全部楼层
发表于 2025-3-27 14:04:27 | 显示全部楼层
Parameterized and Approximation Algorithms for the Maximum Bimodal Subgraph Problemigraph is bimodal if all its vertices are bimodal. Bimodality is at the heart of many types of graph layouts, such as upward drawings, level-planar drawings, and L-drawings. If the graph is not bimodal, the . problem asks for an embedding-preserving bimodal subgraph with the maximum number of edges.
发表于 2025-3-27 20:53:41 | 显示全部楼层
发表于 2025-3-27 23:43:04 | 显示全部楼层
发表于 2025-3-28 06:03:21 | 显示全部楼层
Migration in Irish History 1607-2007 of RAC drawings from the viewpoint of parameterized complexity. In particular, we establish that computing a RAC drawing of an input graph . with at most . bends (or determining that none exists) is fixed-parameter tractable parameterized by either the feedback edge number of ., or . plus the vertex cover number of ..
发表于 2025-3-28 09:19:00 | 显示全部楼层
发表于 2025-3-28 10:51:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 09:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表