找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: 密度
发表于 2025-3-25 06:15:14 | 显示全部楼层
发表于 2025-3-25 11:16:55 | 显示全部楼层
发表于 2025-3-25 13:03:53 | 显示全部楼层
发表于 2025-3-25 18:10:27 | 显示全部楼层
https://doi.org/10.1007/978-3-030-75239-2f a hypergraph ., each vertex . is associated with a point . and each hyperedge . is associated with a connected set . such that . for all .. We say that a given hypergraph . is . by some (infinite) family . of sets in ., if there exist . and . such that (., .) is a geometric representation of .. Fo
发表于 2025-3-25 23:07:51 | 显示全部楼层
https://doi.org/10.1007/978-3-319-78117-4ertices have perfect angular resolution, i.e., all angles incident to a vertex . have size .. We prove that it is .-complete to determine whether a given graph admits a Lombardi drawing respecting a fixed cyclic ordering of the incident edges around each vertex. In particular, this implies .-hardnes
发表于 2025-3-26 00:18:39 | 显示全部楼层
https://doi.org/10.1007/978-3-030-97359-9ecifically, we extend upward drawings of unordered rooted trees where vertices have assigned heights by mapping each vertex to a column. Under an orthogonal drawing style and with every subtree within a column drawn planar, we consider different natural variants concerning the arrangement of subtree
发表于 2025-3-26 05:41:38 | 显示全部楼层
发表于 2025-3-26 10:15:30 | 显示全部楼层
发表于 2025-3-26 14:27:09 | 显示全部楼层
发表于 2025-3-26 17:28:05 | 显示全部楼层
String Graphs with Precise Number of Intersections intersects in at most . points. We introduce the class of .-string graphs as a further restriction of .-string graphs by requiring that every two curves intersect in either zero or precisely . points. We study the hierarchy of these graphs, showing that for any ., .-string graphs are a subclass of
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 22:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表