找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: 衰退
发表于 2025-3-27 00:29:44 | 显示全部楼层
发表于 2025-3-27 02:26:27 | 显示全部楼层
Alexander Grankov,Alexander Milshining in planar bipartite graphs. We formulate our result in a slightly more general setting of cyclic clustered graphs, i.e., the simple graph obtained by contracting each cluster, where we disregard loops and multi-edges, is a cycle.
发表于 2025-3-27 09:02:34 | 显示全部楼层
https://doi.org/10.1007/978-3-658-45686-3hard for several objectives and provide an integer linear programming formulation. Given a plane graph . and a positive integer ., our ILP can also be used to draw . straight-line on a grid of width . and minimum height (if possible).
发表于 2025-3-27 12:26:31 | 显示全部楼层
发表于 2025-3-27 15:32:12 | 显示全部楼层
C-Planarity of Embedded Cyclic c-Graphsing in planar bipartite graphs. We formulate our result in a slightly more general setting of cyclic clustered graphs, i.e., the simple graph obtained by contracting each cluster, where we disregard loops and multi-edges, is a cycle.
发表于 2025-3-27 21:18:22 | 显示全部楼层
Snapping Graph Drawings to the Grid Optimallyhard for several objectives and provide an integer linear programming formulation. Given a plane graph . and a positive integer ., our ILP can also be used to draw . straight-line on a grid of width . and minimum height (if possible).
发表于 2025-3-27 23:52:51 | 显示全部楼层
发表于 2025-3-28 06:08:29 | 显示全部楼层
1-Bend Upward Planar Drawings of SP-Digraphstion gives rise to drawings with optimal angular resolution .. A variant of the proof technique is used to show that (non-directed) reduced series-parallel graphs and flat series-parallel graphs have a (non-upward) one-bend planar drawing with . distinct slopes if biconnected, and with . distinct slopes if connected.
发表于 2025-3-28 10:05:30 | 显示全部楼层
发表于 2025-3-28 11:24:29 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 18:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表