找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: 共用
发表于 2025-3-26 23:47:30 | 显示全部楼层
Roderick G. Lamond,Norman L. Chaterinent next to the density question for the different graph classes. For 1-planar graphs, the recognition problem has been settled, namely it is NP-complete for the general case, while optimal 1-planar graphs, i.e. those with maximum density, can be recognized in linear time. For 2-planar graphs, the
发表于 2025-3-27 02:31:40 | 显示全部楼层
发表于 2025-3-27 07:26:43 | 显示全部楼层
Ralph T. Manktelow M.D., F.R.C.S.(C)d Gotsman, which is in turn based on Floater’s asymmetric extension of Tutte’s classical spring-embedding theorem..First, we give a very simple algorithm to construct piecewise-linear morphs between planar straight-line graphs. Specifically, given isomorphic straight-line drawings . and . of the sam
发表于 2025-3-27 09:44:25 | 显示全部楼层
发表于 2025-3-27 15:46:02 | 显示全部楼层
发表于 2025-3-27 19:23:34 | 显示全部楼层
Microwave Chemical and Materials Processingort) asks whether there exists a . of ., i.e., a planar straight-line drawing of . where the Euclidean length of each edge . is .. Cabello, Demaine, and Rote showed that the . problem is .-hard, even when . assigns the same value to all the edges and the graph is triconnected. Since the existence of
发表于 2025-3-28 01:47:01 | 显示全部楼层
发表于 2025-3-28 04:35:29 | 显示全部楼层
发表于 2025-3-28 09:28:08 | 显示全部楼层
发表于 2025-3-28 13:21:03 | 显示全部楼层
Measurement of Active Circuits,We consider the problem of drawing an outerplanar graph with . vertices with at most one bend per edge if the outer face is already drawn as a simple polygon. We prove that it can be decided in .(.) time if such a drawing exists, where . is the number of interior edges. In the positive case, we can also compute such a drawing.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 15:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表