找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: charity
发表于 2025-3-25 05:36:30 | 显示全部楼层
Upward Planar Morphstween them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of .(1) morphing steps if . is a reduced planar .-graph, .(.) morphing steps if . is a planar .-graph, .(.) morphing steps if . is a reduced upward planar graph, and . morphing
发表于 2025-3-25 08:07:18 | 显示全部楼层
Visualizing the Template of a Chaotic Attractorractors bounded by a genus–1 torus described by a linking matrix. This article introduces a novel and unique tool to validate a linking matrix, to optimize the compactness of the corresponding template and to draw this template. The article provides a detailed description of the different validation
发表于 2025-3-25 13:00:23 | 显示全部楼层
发表于 2025-3-25 15:51:47 | 显示全部楼层
Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bendsnar, and NIC-planar drawing, respectively. A drawing of a graph is . if every edge is crossed at most once. A 1-planar drawing is . if no two pairs of crossing edges share a vertex. A 1-planar drawing is . if no two pairs of crossing edges share two vertices..We study the relations of these beyond-p
发表于 2025-3-25 20:07:24 | 显示全部楼层
发表于 2025-3-26 01:05:49 | 显示全部楼层
发表于 2025-3-26 07:44:16 | 显示全部楼层
发表于 2025-3-26 10:23:11 | 显示全部楼层
Short Plane Supports for Spatial Hypergraphsthat investigate the effect of requiring planarity and acyclicity on the resulting support length. Further, we evaluate the performance and trade-offs between solution quality and speed of several heuristics relative to each other and compared to optimal solutions.
发表于 2025-3-26 14:41:04 | 显示全部楼层
发表于 2025-3-26 18:02:51 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-7018-2 to Randerath et al. [.] is equivalent to the strong Hanani-Tutte theorem for level planarity [.]. Further, we show that this relationship carries over to radial level planarity, which yields a novel polynomial-time algorithm for testing radial level planarity.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 16:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表