找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: Espionage
发表于 2025-3-25 05:39:26 | 显示全部楼层
发表于 2025-3-25 09:38:45 | 显示全部楼层
发表于 2025-3-25 12:25:00 | 显示全部楼层
发表于 2025-3-25 19:38:41 | 显示全部楼层
Kanak Sirari,Lokender Kashyap,C. M. Mehtaused in solving several planar graph drawing problems, including ., and . problems. A regular edge labeling of a plane graph . labels the edges of . so that the edge labels around any vertex show certain regular pattern. The drawing of . is obtained by using the combinatorial structures resulting fr
发表于 2025-3-25 23:49:18 | 显示全部楼层
发表于 2025-3-26 04:14:09 | 显示全部楼层
发表于 2025-3-26 06:45:42 | 显示全部楼层
发表于 2025-3-26 11:02:53 | 显示全部楼层
Johannes Gescher,Andreas Kapplerrizontal and vertical visibility. It is shown that, for .. has a representation with no rectangles having collinear sides if and only if .≤3 or .=3 and .≤4. More generally, it is shown that .. is a rectangle-visibility graph if and only if .≤4. Finally, it is shown that every bipartite rectangle-vis
发表于 2025-3-26 13:42:15 | 显示全部楼层
Microbial Metatranscriptomics Belowgrounde. Two points . and . are visible if the straight-line segment . is not obstructed by any object. Two objects . ∈ . are called visible if there exist points . ∈ . ∈ . such that . is visible from .. We consider visibility only for a finite set of directions. In such a representation, the given graph
发表于 2025-3-26 18:22:27 | 显示全部楼层
https://doi.org/10.1007/978-981-16-1923-6ensional visibility representation that has been studied is one in which each vertex of the graph maps to a closed rectangle in ℝ. and edges are expressed by vertical visibility between rectangles. The rectangles representing vertices are disjoint, contained in planes perpendicular to the .-axis, an
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 10:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表