找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators; Heejae Kim Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[复制链接]
查看: 33851|回复: 39
发表于 2025-3-21 19:32:10 | 显示全部楼层 |阅读模式
书目名称Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators
编辑Heejae Kim
视频video
概述Nominated as an outstanding Ph.D. thesis by the Tokyo Institute of Technology, Japan.Summarizes independent theories (such as symmetry-based indicators and K-theory) in one table.Offers design guideli
丛书名称Springer Theses
图书封面Titlebook: Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators;  Heejae Kim Book 2022 The Editor(s) (if applicable) and The Author(s), unde
描述This book presents a comprehensive theory on glide-symmetric topological crystalline insulators. Beginning with developing a theory of topological phase transitions between a topological and trivial phase, it derives a formula for topological invariance in a glide-symmetric topological phase when inversion symmetry is added into a system. It also shows that the addition of inversion symmetry drastically simplifies the formula, providing insights into this topological phase, and proposes potential implementations. Lastly, based on the above results, the author establishes a way to design topological photonic crystals. Allowing readers to gain a comprehensive understanding of the glide-symmetric topological crystalline insulators, the book offers a way to produce such a  topological phase in various physical systems, such as electronic and photonic systems, in the future.
出版日期Book 2022
关键词Topological Crystalline Insulator; Topological Magnetic Photonic Crystal by Glide Symmetry; Weyl Semim
版次1
doihttps://doi.org/10.1007/978-981-16-9077-8
isbn_softcover978-981-16-9079-2
isbn_ebook978-981-16-9077-8Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators影响因子(影响力)




书目名称Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators影响因子(影响力)学科排名




书目名称Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators网络公开度




书目名称Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators网络公开度学科排名




书目名称Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators被引频次




书目名称Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators被引频次学科排名




书目名称Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators年度引用




书目名称Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators年度引用学科排名




书目名称Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators读者反馈




书目名称Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:07:02 | 显示全部楼层
发表于 2025-3-22 03:01:36 | 显示全部楼层
发表于 2025-3-22 06:55:06 | 显示全部楼层
发表于 2025-3-22 12:16:34 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-5325-5ng a parameter in the magnetic system. We assume that the glide symmetry is preserved in the phase transition. First of all, we construct a theory describing such a phase transition based on an effective model. We find that the TCI-NI phase transition is always intervened by a spinless Weyl semimeta
发表于 2025-3-22 16:50:23 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-5323-1 number associated with the normal vector of the glide plane, and they are expressed in terms of integrals of the Berry curvature. In the present chapter, we study the fate of this topological invariant when inversion symmetry is added while time-reversal symmetry (TRS) is not enforced.
发表于 2025-3-22 19:41:29 | 显示全部楼层
发表于 2025-3-23 00:42:06 | 显示全部楼层
发表于 2025-3-23 01:53:40 | 显示全部楼层
Topology, Symmetry, and Band Theory of Materials, the present chapter. First, we explain general properties of Berry phase, Berry connection, and Berry curvature and how these quantities are encoded in band theory described by Bloch electrons. We also explain how they correspond to the Chern number, as an example of topological invariants, associa
发表于 2025-3-23 09:17:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 23:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表