找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Subanalytic and Semialgebraic Sets; Masahiro Shiota Book 1997 Springer Science+Business Media New York 1997 Finite.algebra.ana

[复制链接]
查看: 15651|回复: 35
发表于 2025-3-21 17:06:04 | 显示全部楼层 |阅读模式
书目名称Geometry of Subanalytic and Semialgebraic Sets
编辑Masahiro Shiota
视频video
丛书名称Progress in Mathematics
图书封面Titlebook: Geometry of Subanalytic and Semialgebraic Sets;  Masahiro Shiota Book 1997 Springer Science+Business Media New York 1997 Finite.algebra.ana
描述Real analytic sets in Euclidean space (Le. , sets defined locally at each point of Euclidean space by the vanishing of an analytic function) were first investigated in the 1950‘s by H. Cartan [Car], H. Whitney [WI-3], F. Bruhat [W-B] and others. Their approach was to derive information about real analytic sets from properties of their complexifications. After some basic geometrical and topological facts were established, however, the study of real analytic sets stagnated. This contrasted the rapid develop­ ment of complex analytic geometry which followed the groundbreaking work of the early 1950‘s. Certain pathologies in the real case contributed to this failure to progress. For example, the closure of -or the connected components of-a constructible set (Le. , a locally finite union of differ­ ences of real analytic sets) need not be constructible (e. g. , R - {O} and 3 2 2 { (x, y, z) E R : x = zy2, x + y2 -=I- O}, respectively). Responding to this in the 1960‘s, R. Thorn [Thl], S. Lojasiewicz [LI,2] and others undertook the study of a larger class of sets, the semianalytic sets, which are the sets defined locally at each point of Euclidean space by a finite number of ana­ lytic f
出版日期Book 1997
关键词Finite; algebra; analytic function; analytic geometry; class; form; function; geometry; information; pdc; proo
版次1
doihttps://doi.org/10.1007/978-1-4612-2008-4
isbn_softcover978-1-4612-7378-3
isbn_ebook978-1-4612-2008-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

书目名称Geometry of Subanalytic and Semialgebraic Sets影响因子(影响力)




书目名称Geometry of Subanalytic and Semialgebraic Sets影响因子(影响力)学科排名




书目名称Geometry of Subanalytic and Semialgebraic Sets网络公开度




书目名称Geometry of Subanalytic and Semialgebraic Sets网络公开度学科排名




书目名称Geometry of Subanalytic and Semialgebraic Sets被引频次




书目名称Geometry of Subanalytic and Semialgebraic Sets被引频次学科排名




书目名称Geometry of Subanalytic and Semialgebraic Sets年度引用




书目名称Geometry of Subanalytic and Semialgebraic Sets年度引用学科排名




书目名称Geometry of Subanalytic and Semialgebraic Sets读者反馈




书目名称Geometry of Subanalytic and Semialgebraic Sets读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:15:45 | 显示全部楼层
Einkauf und Einsatz von Unternehmenssoftwaretheorems in Chapter III are stated in a more general situation than X. The X-versions of the results of this section and Chapter III, except 1.1.6 and 1.1.7, can be proved without the method of integration. Note that the X-versions work in the . category, r a positive integer (see Chapter II).
发表于 2025-3-22 00:39:07 | 显示全部楼层
发表于 2025-3-22 04:36:50 | 显示全部楼层
发表于 2025-3-22 09:04:24 | 显示全部楼层
Triangulations of X-Maps, X-. of an X-set in a Euclidean space. Here note that the stratification is finite locally at each point of the Euclidean space and each stratum is not only an X-set and a . manifold but also a . X-submanifold of the Euclidean space (i.e., locally X-homeomorphic to a Euclidean space).
发表于 2025-3-22 15:10:23 | 显示全部楼层
发表于 2025-3-22 18:23:31 | 显示全部楼层
发表于 2025-3-22 21:41:22 | 显示全部楼层
发表于 2025-3-23 05:25:05 | 显示全部楼层
发表于 2025-3-23 09:35:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 03:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表