找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Moduli; Jan Arthur Christophersen,Kristian Ranestad Conference proceedings 2018 Springer Nature Switzerland AG 2018 algebraic

[复制链接]
楼主: fumble
发表于 2025-3-26 23:41:01 | 显示全部楼层
发表于 2025-3-27 01:29:08 | 显示全部楼层
Conference proceedings 2018esearch articles on the recent surge of developments in understanding moduli problems in algebraic geometry. Written by many of the main contributors to this evolving subject, the book provides a comprehensive collection of new methods and the various directions in which moduli theory is advancing.
发表于 2025-3-27 08:19:18 | 显示全部楼层
发表于 2025-3-27 10:20:55 | 显示全部楼层
发表于 2025-3-27 14:13:06 | 显示全部楼层
Einführung in die synoptische Wetteranalyseion theoretic approaches to the problem. The appendix provides a detailed discussion of computational methods based on trace formulae and automorphic representations, in particular Arthur’s endoscopic classification of automorphic representations for symplectic groups.
发表于 2025-3-27 18:51:18 | 显示全部楼层
Stratifying Quotient Stacks and Moduli Stacks,.∕.], where . is a projective scheme and . is a linear algebraic group with internally graded unipotent radical acting linearly on ., in such a way that each stratum [.∕.] has a geometric quotient .∕.. This leads to stratifications of moduli stacks (for example, sheaves over a projective scheme) suc
发表于 2025-3-27 22:51:38 | 显示全部楼层
发表于 2025-3-28 02:05:19 | 显示全部楼层
The Moduli Spaces of Sheaves on Surfaces, Pathologies and Brill-Noether Problems,rill-Noether problem for rational surfaces. In order to highlight some of the difficulties for more general surfaces, we show that moduli spaces of rank 2 sheaves on very general hypersurfaces of degree . in . can have arbitrarily many irreducible components as . tends to infinity.
发表于 2025-3-28 08:16:42 | 显示全部楼层
发表于 2025-3-28 12:01:52 | 显示全部楼层
The Topology of , and Its Compactifications,ns. The main emphasis lies on the computation of the cohomology for small genus and on stabilization results. We review both geometric and representation theoretic approaches to the problem. The appendix provides a detailed discussion of computational methods based on trace formulae and automorphic
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 14:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表