找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Minkowski Space-Time; Francesco Catoni,Dino Boccaletti,Paolo Zampetti Book 2011 Francesco Catoni 2011 Minkowski space-time.hy

[复制链接]
楼主: Intimidate
发表于 2025-3-25 05:25:08 | 显示全部楼层
发表于 2025-3-25 09:50:16 | 显示全部楼层
发表于 2025-3-25 14:42:19 | 显示全部楼层
Trigonometry in the Hyperbolic (Minkowski) Plane,nks to the equivalent properties between complex and hyperbolic numbers, the geometry of Minkowski space-time can be formalized in a similar algebraic way. Moreover, introducing two invariant quantities, the complete formalization of space-time trigonometry is obtained.
发表于 2025-3-25 18:49:12 | 显示全部楼层
发表于 2025-3-25 22:43:48 | 显示全部楼层
Some Final Considerations,e as we usually do for Euclidean plane geometry. Otherwise the obtained mathematical system, following Euclidean geometry, combine the logical vision with the intuitive vision allowing us to agree with the following Einstein’s thought.
发表于 2025-3-26 03:47:39 | 显示全部楼层
Introduction,c (e.m.) theory of obeying Galilean transformations. The non-invariance of the e.m. theory under Galilean transformations induced the theoretical physicists, at the end of the twelfth century, to invent new space–time transformations which did not allow to consider the time variable as “absolutely”
发表于 2025-3-26 04:49:40 | 显示全部楼层
发表于 2025-3-26 10:44:14 | 显示全部楼层
Trigonometry in the Hyperbolic (Minkowski) Plane,nks to the equivalent properties between complex and hyperbolic numbers, the geometry of Minkowski space-time can be formalized in a similar algebraic way. Moreover, introducing two invariant quantities, the complete formalization of space-time trigonometry is obtained.
发表于 2025-3-26 13:45:17 | 显示全部楼层
发表于 2025-3-26 17:07:23 | 显示全部楼层
Some Final Considerations,e as we usually do for Euclidean plane geometry. Otherwise the obtained mathematical system, following Euclidean geometry, combine the logical vision with the intuitive vision allowing us to agree with the following Einstein’s thought.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 07:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表