找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Digital Spaces; Gabor T. Herman Textbook 1998 Birkhäuser Boston 1998 Connected space.Geometry.Graph.Graph theory.Sim.Spaces.al

[复制链接]
楼主: GLOAT
发表于 2025-3-25 04:04:29 | 显示全部楼层
Boundary Tracking, of this, we show that there is a “one-size-fits-all” algorithm which, given a binary picture over a finitary 1-simply connected digital space and a boundary face between a 1-spel and a 0-spel, will return the set of all boundary faces between the component of 1-spels containing the given 1-spel and
发表于 2025-3-25 07:38:33 | 显示全部楼层
发表于 2025-3-25 13:30:36 | 显示全部楼层
发表于 2025-3-25 16:50:57 | 显示全部楼层
2296-5009 uation coefficient in slices through the body. (Since different tissue types attenuate X-rays differently, such maps provide a good visualization of what is in 978-1-4612-8669-1978-1-4612-4136-2Series ISSN 2296-5009 Series E-ISSN 2296-5017
发表于 2025-3-25 20:52:22 | 显示全部楼层
Digital Spaces,in digital geometry. We need a framework appropriate for a mathematical treatment of the intuitive notion of a “surface with a connected inside and a connected outside” (a “Jordan surface”) in the discrete multidimensional environment.
发表于 2025-3-26 02:12:35 | 显示全部楼层
Verschiedene Entwicklungen reeller Zahlen,After our brief excursion into matters which had to do with topology in the classical sense, we return to our main topic: the geometry of digital spaces. In fact, this is not quite correct; we return to digital spaces, but what we do with them in this chapter may be considered a departure from “geometry.”
发表于 2025-3-26 04:45:05 | 显示全部楼层
Binary Pictures,After our brief excursion into matters which had to do with topology in the classical sense, we return to our main topic: the geometry of digital spaces. In fact, this is not quite correct; we return to digital spaces, but what we do with them in this chapter may be considered a departure from “geometry.”
发表于 2025-3-26 08:52:23 | 显示全部楼层
978-1-4612-8669-1Birkhäuser Boston 1998
发表于 2025-3-26 12:54:20 | 显示全部楼层
Geometry of Digital Spaces978-1-4612-4136-2Series ISSN 2296-5009 Series E-ISSN 2296-5017
发表于 2025-3-26 20:42:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 23:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表