找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Continued Fractions; Oleg Karpenkov Textbook 20131st edition Springer-Verlag Berlin Heidelberg 2013 algebraic irrationalities.

[复制链接]
查看: 30953|回复: 58
发表于 2025-3-21 18:44:29 | 显示全部楼层 |阅读模式
书目名称Geometry of Continued Fractions
编辑Oleg Karpenkov
视频video
概述New approach to the geometry of numbers, very visual and algorithmic.Numerous illustrations and examples.Problems for each chapter.Includes supplementary material:
丛书名称Algorithms and Computation in Mathematics
图书封面Titlebook: Geometry of Continued Fractions;  Oleg Karpenkov Textbook 20131st edition Springer-Verlag Berlin Heidelberg 2013 algebraic irrationalities.
描述.Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry.. .The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses..
出版日期Textbook 20131st edition
关键词algebraic irrationalities; continued fractions; generalized continued fractions; integer trigonometry; u
版次1
doihttps://doi.org/10.1007/978-3-642-39368-6
isbn_ebook978-3-642-39368-6Series ISSN 1431-1550
issn_series 1431-1550
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

书目名称Geometry of Continued Fractions影响因子(影响力)




书目名称Geometry of Continued Fractions影响因子(影响力)学科排名




书目名称Geometry of Continued Fractions网络公开度




书目名称Geometry of Continued Fractions网络公开度学科排名




书目名称Geometry of Continued Fractions被引频次




书目名称Geometry of Continued Fractions被引频次学科排名




书目名称Geometry of Continued Fractions年度引用




书目名称Geometry of Continued Fractions年度引用学科排名




书目名称Geometry of Continued Fractions读者反馈




书目名称Geometry of Continued Fractions读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:29:26 | 显示全部楼层
,Lösung der Fundamentalaufgaben,or infinite regular continued fractions. Further, we prove existence and uniqueness of continued fractions for a given number (odd and even continued fractions in the rational case). Finally, we discuss approximation properties of continued fractions.
发表于 2025-3-22 02:10:43 | 显示全部楼层
发表于 2025-3-22 06:47:11 | 显示全部楼层
发表于 2025-3-22 12:47:42 | 显示全部楼层
发表于 2025-3-22 14:32:59 | 显示全部楼层
发表于 2025-3-22 18:31:43 | 显示全部楼层
发表于 2025-3-23 00:36:53 | 显示全部楼层
Grundgleichungen der Hydraulik,and unit determinant. We say that the matrices . and . from . are integer conjugate if there exists an . matrix . such that .=... A description of integer conjugacy classes in the two-dimensional case is the subject of Gauss’s reduction theory, where conjugacy classes are classified by periods of ce
发表于 2025-3-23 02:46:43 | 显示全部楼层
Einführung in die Technische Mechanike Lagrange’s theorem stating that every quadratic irrationality has a periodic continued fraction, conversely that every periodic continued fraction is a quadratic irrationality. One of the ingredients to the proof of Lagrange theorem is the classical theorem on integer solutions of Pell’s equation
发表于 2025-3-23 08:14:55 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 08:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表