找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry from Dynamics, Classical and Quantum; José F. Cariñena,Alberto Ibort,Giuseppe Morandi Book 2015 Springer Science+Business Media D

[复制链接]
查看: 24740|回复: 45
发表于 2025-3-21 16:09:26 | 显示全部楼层 |阅读模式
书目名称Geometry from Dynamics, Classical and Quantum
编辑José F. Cariñena,Alberto Ibort,Giuseppe Morandi
视频video
概述The interplay between geometry and physics is presented in a novel way: geometrical structures are derived from dynamics.Simple examples are given to simplify abstract and difficult geometrical ideas
图书封面Titlebook: Geometry from Dynamics, Classical and Quantum;  José F. Cariñena,Alberto Ibort,Giuseppe Morandi Book 2015 Springer Science+Business Media D
描述This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system). The book departs from the principle that ‘‘dynamics is first‘‘ and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics. Finally, it is shown that further properties that allow the explicit description of the dynamics of certain dynamical systems, like integrability and super integrability, are deeply related
出版日期Book 2015
关键词Integrable Systems; Invariant Hermitean Structures; Inverse Problems; Kaehler Manifolds; Kustaanheimo-St
版次1
doihttps://doi.org/10.1007/978-94-017-9220-2
isbn_softcover978-94-024-0154-7
isbn_ebook978-94-017-9220-2
copyrightSpringer Science+Business Media Dordrecht 2015
The information of publication is updating

书目名称Geometry from Dynamics, Classical and Quantum影响因子(影响力)




书目名称Geometry from Dynamics, Classical and Quantum影响因子(影响力)学科排名




书目名称Geometry from Dynamics, Classical and Quantum网络公开度




书目名称Geometry from Dynamics, Classical and Quantum网络公开度学科排名




书目名称Geometry from Dynamics, Classical and Quantum被引频次




书目名称Geometry from Dynamics, Classical and Quantum被引频次学科排名




书目名称Geometry from Dynamics, Classical and Quantum年度引用




书目名称Geometry from Dynamics, Classical and Quantum年度引用学科排名




书目名称Geometry from Dynamics, Classical and Quantum读者反馈




书目名称Geometry from Dynamics, Classical and Quantum读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:04:21 | 显示全部楼层
发表于 2025-3-22 02:46:36 | 显示全部楼层
发表于 2025-3-22 04:59:25 | 显示全部楼层
The Classical Formulations of Dynamics of Hamilton and Lagrange,agrangian and the Hamiltonian formalism respectively. The approach taken by many authors is that of postulating that the equations of dynamics are derived from variational principles (a route whose historical episodes are plenty of lights and shadows [.]).
发表于 2025-3-22 10:37:23 | 显示全部楼层
,Schleifensteuerung, logische Größen,terest: symmetries and constants of motion as it was discussed in the previous chapter. Higher order objects like contravariant o covariant tensors of order 2 tensorial will be discussed now. This problem will lead us in particular to the study of Poisson and symplectic structures compatible with our given dynamical system ..
发表于 2025-3-22 12:54:44 | 显示全部楼层
发表于 2025-3-22 20:57:58 | 显示全部楼层
发表于 2025-3-23 00:07:22 | 显示全部楼层
https://doi.org/10.1007/978-94-017-9220-2Integrable Systems; Invariant Hermitean Structures; Inverse Problems; Kaehler Manifolds; Kustaanheimo-St
发表于 2025-3-23 04:29:26 | 显示全部楼层
发表于 2025-3-23 07:12:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 11:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表