找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry and its Applications; Vladimir Rovenski,Paweł Walczak Conference proceedings 2014 Springer International Publishing Switzerland 2

[复制链接]
楼主: Osteopenia
发表于 2025-3-23 11:30:08 | 显示全部楼层
Einleitung: Bedeutung der PLL-Technik, only .(3) of constant curvature + 1 admits stable totally geodesic submanifolds of this kind. Restricting the variations to left-invariant (i.e., equidistant) ones, we give a complete list of groups which admit stable/unstable unit vector fields with totally geodesic image.
发表于 2025-3-23 16:51:51 | 显示全部楼层
发表于 2025-3-23 19:28:17 | 显示全部楼层
发表于 2025-3-24 00:14:44 | 显示全部楼层
发表于 2025-3-24 05:03:58 | 显示全部楼层
The Ricci Flow on Some Generalized Wallach Spacesingularity of all singular points of the normalized Ricci flow on all such spaces. Our main result gives a qualitative answer for almost all points . in the cube .. We also consider in detail some important partial cases.
发表于 2025-3-24 06:32:52 | 显示全部楼层
发表于 2025-3-24 14:15:42 | 显示全部楼层
发表于 2025-3-24 16:17:50 | 显示全部楼层
发表于 2025-3-24 20:08:23 | 显示全部楼层
https://doi.org/10.1007/978-3-662-42480-3tem. All nonsymmetric generalized Wallach spaces can be naturally parametrized by three positive numbers .. Our interest is to determine the type of singularity of all singular points of the normalized Ricci flow on all such spaces. Our main result gives a qualitative answer for almost all points .
发表于 2025-3-25 03:13:23 | 显示全部楼层
Sheila R. Buxton,Stanley M. Robertsoportional to the mixed scalar curvature, Scal.. The flow preserves harmonicity of foliations and is used to examine the question: When does a foliation admit a metric with a given property of Scal. (e.g., positive/negative or constant)? If the mean curvature vector of . is leaf-wise conservative, t
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 15:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表