找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry and Spectra of Compact Riemann Surfaces; Peter Buser Book 2010 Springer Science+Business Media, LLC 2010 Laplace operator.Riemann

[复制链接]
查看: 55086|回复: 35
发表于 2025-3-21 19:46:29 | 显示全部楼层 |阅读模式
书目名称Geometry and Spectra of Compact Riemann Surfaces
编辑Peter Buser
视频video
概述Includes supplementary material:
丛书名称Modern Birkhäuser Classics
图书封面Titlebook: Geometry and Spectra of Compact Riemann Surfaces;  Peter Buser Book 2010 Springer Science+Business Media, LLC 2010 Laplace operator.Riemann
描述This book deals with two subjects. The first subject is the geometric theory of compact Riemann surfaces of genus greater than one, the second subject is the Laplace operator and its relationship with the geometry of compact Riemann surfaces. The book grew out of the idea, a long time ago, to publish a Habili- tionsschrift, a thesis, in which I studied Bers‘ pants decomposition theorem and its applications to the spectrum of a compact Riemann surface. A basic tool in the thesis was cutting and pasting in connection with the trigono­ metry of hyperbolic geodesic polygons. As this approach to the geometry of a compact Riemann surface did not exist in book form, I took this book as an occasion to carry out the geometry in detail, and so it grew by several chapters. Also, while I was writing things up there was much progress in the field, and some of the new results were too challenging to be left out of the book. For instance, Sunada‘s construction of isospectral manifolds was fascinating, and I got hooked on constructing examples for quite a while. So time went on and the book kept growing. Fortunately, the interest in exis­ tence proofs also kept growing. The editor, for instance, w
出版日期Book 2010
关键词Laplace operator; Riemann surfaces; Sunada’s construction; Wolpert’s theorem; complex Riemann surface th
版次1
doihttps://doi.org/10.1007/978-0-8176-4992-0
isbn_softcover978-0-8176-4991-3
isbn_ebook978-0-8176-4992-0Series ISSN 2197-1803 Series E-ISSN 2197-1811
issn_series 2197-1803
copyrightSpringer Science+Business Media, LLC 2010
The information of publication is updating

书目名称Geometry and Spectra of Compact Riemann Surfaces影响因子(影响力)




书目名称Geometry and Spectra of Compact Riemann Surfaces影响因子(影响力)学科排名




书目名称Geometry and Spectra of Compact Riemann Surfaces网络公开度




书目名称Geometry and Spectra of Compact Riemann Surfaces网络公开度学科排名




书目名称Geometry and Spectra of Compact Riemann Surfaces被引频次




书目名称Geometry and Spectra of Compact Riemann Surfaces被引频次学科排名




书目名称Geometry and Spectra of Compact Riemann Surfaces年度引用




书目名称Geometry and Spectra of Compact Riemann Surfaces年度引用学科排名




书目名称Geometry and Spectra of Compact Riemann Surfaces读者反馈




书目名称Geometry and Spectra of Compact Riemann Surfaces读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:24:50 | 显示全部楼层
,Perturbations of the Laplacian in Teichmüller Space,
发表于 2025-3-22 04:16:14 | 显示全部楼层
发表于 2025-3-22 07:48:44 | 显示全部楼层
发表于 2025-3-22 10:56:10 | 显示全部楼层
Geometry and Spectra of Compact Riemann Surfaces978-0-8176-4992-0Series ISSN 2197-1803 Series E-ISSN 2197-1811
发表于 2025-3-22 13:34:45 | 显示全部楼层
https://doi.org/10.1007/978-0-8176-4992-0Laplace operator; Riemann surfaces; Sunada’s construction; Wolpert’s theorem; complex Riemann surface th
发表于 2025-3-22 18:27:10 | 显示全部楼层
发表于 2025-3-23 01:04:37 | 显示全部楼层
发表于 2025-3-23 04:38:55 | 显示全部楼层
Book 2010 is the Laplace operator and its relationship with the geometry of compact Riemann surfaces. The book grew out of the idea, a long time ago, to publish a Habili- tionsschrift, a thesis, in which I studied Bers‘ pants decomposition theorem and its applications to the spectrum of a compact Riemann sur
发表于 2025-3-23 08:22:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 18:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表