找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry and Representation Theory of Real and p-adic groups; Juan Tirao,David A. Vogan,Joseph A. Wolf Textbook 1998 Birkhäuser Boston 199

[复制链接]
楼主: Monroe
发表于 2025-3-28 17:03:56 | 显示全部楼层
发表于 2025-3-28 21:13:11 | 显示全部楼层
The Spherical Dual for ,-adic Groups,sible irreducible (g, .) modules in the work of Langlands, Shelstad, Knapp—Zuckerman and Vogan. In the .-adic case they play a significant role in the work of Kazhdan—Lusztig and Lusztig. There is a technical modification in that one considers maps of the Weil—Deligne—Langlands group,..
发表于 2025-3-29 00:45:52 | 显示全部楼层
0743-1643 s, from the work of Gelfand and Naimark on principal series representations to that of Beilinson and Bernstein on localization. The article of Wolf provides a d978-1-4612-8681-3978-1-4612-4162-1Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-29 03:37:14 | 显示全部楼层
发表于 2025-3-29 07:56:38 | 显示全部楼层
Finite Rank Homogeneous Holomorphic Bundles in Flag Spaces,ns for a real reductive Lie group. In the mid 1950s, Harish-Chandra realized a family of irreducible unitary representations for some semisimple groups, using the global sections of homogeneous bundles defined over Hermitian symmetric spaces [6]. At about the same time Borel and Weil constructed the
发表于 2025-3-29 12:11:53 | 显示全部楼层
发表于 2025-3-29 15:55:44 | 显示全部楼层
Smooth Representations of Reductive ,-adic Groups,f smooth (complex) representations of a .-adic group in terms of certain irreducible representations of compact, open subgroups. Motivation for this program comes from two special cases which may be viewed as extreme examples of what one hopes is a general phenomenon.
发表于 2025-3-29 19:51:50 | 显示全部楼层
发表于 2025-3-30 00:50:52 | 显示全部楼层
发表于 2025-3-30 06:37:14 | 显示全部楼层
Flag Manifolds and Representation Theory,a, August 1995. The topics were complex flag manifolds, real group orbits, and linear cycle spaces, with applications to the geometric construction of representations of semisimple Lie groups. These topics come up in many aspects of complex differential geometry and harmonic analysis.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 04:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表