找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry and Dynamics of Groups and Spaces; In Memory of Alexand Mikhail Kapranov,Yuri Ivanovich Manin,Leonid Potya Book 2008 Birkhäuser Ba

[复制链接]
查看: 50901|回复: 64
发表于 2025-3-21 17:50:29 | 显示全部楼层 |阅读模式
书目名称Geometry and Dynamics of Groups and Spaces
副标题In Memory of Alexand
编辑Mikhail Kapranov,Yuri Ivanovich Manin,Leonid Potya
视频video
概述Contributions by many prominent mathematicians.Provides an extensive survey on Kleinian groups in higher dimensions.Contains an unpublished book "Analytic Topology of Groups, Actions, Strings and Vari
丛书名称Progress in Mathematics
图书封面Titlebook: Geometry and Dynamics of Groups and Spaces; In Memory of Alexand Mikhail Kapranov,Yuri Ivanovich Manin,Leonid Potya Book 2008 Birkhäuser Ba
出版日期Book 2008
关键词Chern character; Congruence; Dirac operator; Fundamental group; Kleinian group; Lattice; Minimal surface; g
版次1
doihttps://doi.org/10.1007/978-3-7643-8608-5
isbn_ebook978-3-7643-8608-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkhäuser Basel 2008
The information of publication is updating

书目名称Geometry and Dynamics of Groups and Spaces影响因子(影响力)




书目名称Geometry and Dynamics of Groups and Spaces影响因子(影响力)学科排名




书目名称Geometry and Dynamics of Groups and Spaces网络公开度




书目名称Geometry and Dynamics of Groups and Spaces网络公开度学科排名




书目名称Geometry and Dynamics of Groups and Spaces被引频次




书目名称Geometry and Dynamics of Groups and Spaces被引频次学科排名




书目名称Geometry and Dynamics of Groups and Spaces年度引用




书目名称Geometry and Dynamics of Groups and Spaces年度引用学科排名




书目名称Geometry and Dynamics of Groups and Spaces读者反馈




书目名称Geometry and Dynamics of Groups and Spaces读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:57:58 | 显示全部楼层
Geometry and Dynamics of Groups and Spaces978-3-7643-8608-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-22 00:39:05 | 显示全部楼层
0743-1643 Overview: Contributions by many prominent mathematicians.Provides an extensive survey on Kleinian groups in higher dimensions.Contains an unpublished book "Analytic Topology of Groups, Actions, Strings and Vari978-3-7643-8608-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-22 04:40:42 | 显示全部楼层
发表于 2025-3-22 11:01:00 | 显示全部楼层
,Meßinstrumente für Strom und Spannung,operator acting on the total space . of the tangent bundle .. This construction is parallel to the deformation of the de Rham Hodge operator we had obtained in a previous work. If . is complex and Kähler, we produce this way a deformation of the Hodge theory of the corresponding Dolbeault complex..B
发表于 2025-3-22 12:58:58 | 显示全部楼层
Einführung in die Elektrizitätslehree then construct inner cohomomorphism objects in their categories (and categories of algebras over them). We argue that they provide an approach to symmetry and moduli objects in non-commutative geometries based upon these “ring-like” structures. We give a unified axiomatic treatment of generalized
发表于 2025-3-22 20:16:04 | 显示全部楼层
,Mechanismus der Leitungsströme,amples and counterexamples produced via the (.)-techniques in every of the following categories: (i) probability preserving actions, (ii) infinite measure preserving actions, (iii) non-singular actions (Krieger’s type .).
发表于 2025-3-23 00:37:11 | 显示全部楼层
,Mechanismus der Leitungsströme,Fel’shtyn and Hill [.] conjectured that if . is injective, then .(.) is infinite. In this paper, we show that the conjecture holds for the Baumslag-Solitar groups .(.), where either |.| or |.| is greater than 1 and |.| ≠ |.|. We also show that in the cases where |.| = |.| ή 1 or . = −1 the conjectur
发表于 2025-3-23 02:02:51 | 显示全部楼层
发表于 2025-3-23 09:11:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 22:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表