找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry and Analysis of Metric Spaces via Weighted Partitions; Jun Kigami Book 2020 The Editor(s) (if applicable) and The Author(s), unde

[复制链接]
楼主: 愚蠢地活
发表于 2025-3-23 13:39:30 | 显示全部楼层
Partitions, Weight Functions and Their Hyperbolicity,In this section, we review basic notions and notations on a tree with a reference point.
发表于 2025-3-23 13:56:00 | 显示全部楼层
Relations of Weight Functions,In this section, we define the notion of bi-Lipschitz equivalence of weight functions. Originally the definition, Definition 3.1.1, only concerns the tree structure . and has nothing to do with a partition of a space.
发表于 2025-3-23 20:58:56 | 显示全部楼层
Characterization of Ahlfors Regular Conformal Dimension,In this section, we present a sufficient condition for the existence of an adapted metric to a given weight function. The sufficient condition obtained in this section will be used to construct an Ahlfors regular metric later.
发表于 2025-3-23 23:58:28 | 显示全部楼层
发表于 2025-3-24 02:53:51 | 显示全部楼层
发表于 2025-3-24 07:25:43 | 显示全部楼层
发表于 2025-3-24 12:22:29 | 显示全部楼层
发表于 2025-3-24 16:56:58 | 显示全部楼层
Book 2020 iterated decomposition) of a compact metric space. Via a partition, a compact metric space is associated with an infinite graph whose boundary is the original space. Metrics and measures on the space are then studied from an integrated point of view as weights of the partition. In the course of the
发表于 2025-3-24 22:03:33 | 显示全部楼层
Introduction and a Showcase,nit interval [0, 1] shown in Fig. 1.1. Let .. = [0, 1] and divide .. in half as . and .. Next, .. and .. are divided in half again and yield .. for each (., .) ∈{0, 1}.. Repeating this procedure, we obtain . satisfying . for any . ≥ 0 and ..….. ∈{0, 1}.. In this example, there are two notable proper
发表于 2025-3-25 00:03:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 19:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表