找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry; A Metric Approach wi Richard S. Millman,George D. Parker Textbook 19811st edition Springer-Verlag Inc. 1981 Cartesian.Euclid.Geom

[复制链接]
楼主: VERSE
发表于 2025-3-25 05:23:16 | 显示全部楼层
https://doi.org/10.1007/978-3-663-07179-2ned two segments to be parallel if no matter how far they are extended in both directions, they never meet. Note that he was interested in . rather than .. This follows the general preference of the time for finite objects. The idea of . meeting is, however, infinite in nature. How then does one det
发表于 2025-3-25 07:37:00 | 显示全部楼层
发表于 2025-3-25 12:44:43 | 显示全部楼层
发表于 2025-3-25 15:57:11 | 显示全部楼层
,Versuchsprogramm und Versuchsdurchführung, investigation of the properties of a Euclidean area function. In Sections 10.2 and 10.3 we will prove the existence of area functions for Euclidean and hyperbolic geometries respectively. In the last section we will consider a beautiful theorem due to J. Bolyai which says that if two polygonal regi
发表于 2025-3-25 20:36:22 | 显示全部楼层
发表于 2025-3-26 01:55:05 | 显示全部楼层
发表于 2025-3-26 06:41:04 | 显示全部楼层
978-1-4684-0132-5Springer-Verlag Inc. 1981
发表于 2025-3-26 10:23:57 | 显示全部楼层
Geometry978-1-4684-0130-1Series ISSN 0172-6056 Series E-ISSN 2197-5604
发表于 2025-3-26 12:39:23 | 显示全部楼层
https://doi.org/10.1007/978-3-663-04785-8h other by a collection of ., or first principles. For example, when we discuss incidence geometry below, we shall assume as a first principle that if . and . are distinct points then there is a unique line that contains both . and ..
发表于 2025-3-26 19:26:27 | 显示全部楼层
https://doi.org/10.1007/978-3-663-07176-1 satisfied. After the definitions are made, we will give a number of examples which will serve as models for these geometries. Two of these models, the Euclidean Plane and the Hyperbolic Plane, will be used throughout the rest of the book.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 02:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表