找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric and Numerical Optimal Control; Application to Swimm Bernard Bonnard,Monique Chyba,Jérémy Rouot Book 2018 The Author(s), under exc

[复制链接]
查看: 35314|回复: 36
发表于 2025-3-21 18:38:30 | 显示全部楼层 |阅读模式
书目名称Geometric and Numerical Optimal Control
副标题Application to Swimm
编辑Bernard Bonnard,Monique Chyba,Jérémy Rouot
视频video
概述Provides recent findings and state-of-art computational techniques in geometric control.Analyzes the problem of micro-swimming in relation with sub-Riemannian geometry.Presents the application of opti
丛书名称SpringerBriefs in Mathematics
图书封面Titlebook: Geometric and Numerical Optimal Control; Application to Swimm Bernard Bonnard,Monique Chyba,Jérémy Rouot Book 2018 The Author(s), under exc
描述This book introduces readers to techniques of geometric optimal control as well as the exposure and applicability of adapted numerical schemes. It is based on two real-world applications, which have been the subject of two current academic research programs and motivated by industrial use –  the design of micro-swimmers and the contrast problem in medical resonance imaging. The recently developed numerical software has been applied to the cases studies presented here. The book is intended for use at the graduate and Ph.D. level to introduce students from applied mathematics and control engineering to geometric and computational techniques in optimal control..
出版日期Book 2018
关键词Optimal Control; Calculus of Variations; Swimming at Low Reynolds Number; Magnetic Resonance Imaging; Nu
版次1
doihttps://doi.org/10.1007/978-3-319-94791-4
isbn_softcover978-3-319-94790-7
isbn_ebook978-3-319-94791-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2018
The information of publication is updating

书目名称Geometric and Numerical Optimal Control影响因子(影响力)




书目名称Geometric and Numerical Optimal Control影响因子(影响力)学科排名




书目名称Geometric and Numerical Optimal Control网络公开度




书目名称Geometric and Numerical Optimal Control网络公开度学科排名




书目名称Geometric and Numerical Optimal Control被引频次




书目名称Geometric and Numerical Optimal Control被引频次学科排名




书目名称Geometric and Numerical Optimal Control年度引用




书目名称Geometric and Numerical Optimal Control年度引用学科排名




书目名称Geometric and Numerical Optimal Control读者反馈




书目名称Geometric and Numerical Optimal Control读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:18:36 | 显示全部楼层
Geometric and Numerical Optimal Control978-3-319-94791-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
发表于 2025-3-22 03:44:11 | 显示全部楼层
发表于 2025-3-22 07:33:29 | 显示全部楼层
发表于 2025-3-22 12:07:38 | 显示全部楼层
Bernadette Andreosso-O’Callaghan,Qin TangIn this section we state the Pontryagin maximum principle and we outline the proof. We adopt the presentation from Lee and Markus [64] where the result is presented into two theorems.
发表于 2025-3-22 16:11:57 | 显示全部楼层
Sven Bislev,Dorte Salskov-IversenThe two cases studied in this book show the practical interest of combining geometric optimal control with numeric computations using the developed software to solve industrial type problems.
发表于 2025-3-22 17:34:17 | 显示全部楼层
,Historical Part—Calculus of Variations,The calculus of variations is an old mathematical discipline and historically finds its origins in the introduction of the brachistochrone problem at the end of the 17th century by Johann Bernoulli to challenge his contemporaries to solve it. Here, we briefly introduce the reader to the main results.
发表于 2025-3-22 22:37:13 | 显示全部楼层
Weak Maximum Principle and Application to Swimming at Low Reynolds Number,We refer to [9, 42, 46] for more details about the general concepts and notations introduced in this section.
发表于 2025-3-23 02:07:38 | 显示全部楼层
Maximum Principle and Application to Nuclear Magnetic Resonance and Magnetic Resonance Imaging,In this section we state the Pontryagin maximum principle and we outline the proof. We adopt the presentation from Lee and Markus [64] where the result is presented into two theorems.
发表于 2025-3-23 06:01:54 | 显示全部楼层
Conclusion,The two cases studied in this book show the practical interest of combining geometric optimal control with numeric computations using the developed software to solve industrial type problems.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 04:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表