找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces and Applications; TJC 2019, Djerba, Tu Ali Baklouti,Hideyuki Ishi Conference proceedi

[复制链接]
楼主: SORB
发表于 2025-3-28 17:37:26 | 显示全部楼层
发表于 2025-3-28 21:52:33 | 显示全部楼层
Tai-Yoo Kim,Almas Heshmati,Jihyoun Park terms of its .-norm and the diameter of its support. We investigate in this paper the algebraic structure of compactly generated .-adic groups that have property (RD). We prove in particular that an algebraic group over . which is compactly generated as well as its radical has property (RD) if and
发表于 2025-3-28 23:51:12 | 显示全部楼层
The Sources and Evolution of Growth,eir generators. For the group actions, we consider split solvable Lie groups acting on the cones linearly and simply transitively. As an application, we present Capelli-type identities for generalized Vinberg cones.
发表于 2025-3-29 03:09:03 | 显示全部楼层
发表于 2025-3-29 08:13:20 | 显示全部楼层
978-3-030-78348-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-29 11:29:42 | 显示全部楼层
Geometric and Harmonic Analysis on Homogeneous Spaces and Applications978-3-030-78346-4Series ISSN 2194-1009 Series E-ISSN 2194-1017
发表于 2025-3-29 18:31:15 | 显示全部楼层
发表于 2025-3-29 22:01:43 | 显示全部楼层
Singular Integral Operators of Convolution Type on Jacobi Hypergroup,etween the . operator norms of . and the Euclidean operator ., where .. Therefore, to define the Calderón-Zygmund class ., we shall obtain some conditions on . under which . belongs to .. Then, . is bounded on . and, by the transference principle, . is bounded on ..
发表于 2025-3-30 00:39:41 | 显示全部楼层
Conference proceedings 2021ated in the 6th Tunisian-Japanese conference "Geometric and Harmonic Analysis on homogeneous spaces and Applications" held at Djerba Island in Tunisia during the period of December 16-19, 2019. The aim of this conference and the five preceding Tunisian-Japanese meetings was to keep up with the activ
发表于 2025-3-30 04:50:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 23:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表