找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces; TJC 2017, Mahdia, Tu Ali Baklouti,Takaaki Nomura Conference proceedings 2019 Springe

[复制链接]
查看: 27179|回复: 43
发表于 2025-3-21 18:22:14 | 显示全部楼层 |阅读模式
书目名称Geometric and Harmonic Analysis on Homogeneous Spaces
副标题TJC 2017, Mahdia, Tu
编辑Ali Baklouti,Takaaki Nomura
视频video
概述Covers a wide range of the groups with minute descriptions for harmonic analysis, including both semi-simple Lie groups and solvable Lie groups.Includes hot topics presented at the 5th Tunisian-Japane
丛书名称Springer Proceedings in Mathematics & Statistics
图书封面Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces; TJC 2017, Mahdia, Tu Ali Baklouti,Takaaki Nomura Conference proceedings 2019 Springe
描述.This book presents a number of important contributions focusing on harmonic analysis and representation theory of Lie groups. All were originally presented at the 5.th. Tunisian–Japanese conference “Geometric and Harmonic Analysis on Homogeneous Spaces and Applications”, which was held at Mahdia in Tunisia from 17 to 21 December 2017 and was dedicated to the memory of the brilliant Tunisian mathematician Majdi Ben Halima. The peer-reviewed contributions selected for publication have been modified and are, without exception, of a standard equivalent to that in leading mathematical periodicals. Highlighting the close links between group representation theory and harmonic analysis on homogeneous spaces and numerous mathematical areas, such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics, the book is intended for researchers and students working in the area of commutative and non-commutative harmonic analysis as well as group representations..
出版日期Conference proceedings 2019
关键词representation theory of Lie Groups; geometry; harmonic analysis; homogeneous space; differential geomet
版次1
doihttps://doi.org/10.1007/978-3-030-26562-5
isbn_softcover978-3-030-26564-9
isbn_ebook978-3-030-26562-5Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Geometric and Harmonic Analysis on Homogeneous Spaces影响因子(影响力)




书目名称Geometric and Harmonic Analysis on Homogeneous Spaces影响因子(影响力)学科排名




书目名称Geometric and Harmonic Analysis on Homogeneous Spaces网络公开度




书目名称Geometric and Harmonic Analysis on Homogeneous Spaces网络公开度学科排名




书目名称Geometric and Harmonic Analysis on Homogeneous Spaces被引频次




书目名称Geometric and Harmonic Analysis on Homogeneous Spaces被引频次学科排名




书目名称Geometric and Harmonic Analysis on Homogeneous Spaces年度引用




书目名称Geometric and Harmonic Analysis on Homogeneous Spaces年度引用学科排名




书目名称Geometric and Harmonic Analysis on Homogeneous Spaces读者反馈




书目名称Geometric and Harmonic Analysis on Homogeneous Spaces读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:21:59 | 显示全部楼层
发表于 2025-3-22 02:15:06 | 显示全部楼层
发表于 2025-3-22 08:30:38 | 显示全部楼层
发表于 2025-3-22 11:53:15 | 显示全部楼层
发表于 2025-3-22 14:13:16 | 显示全部楼层
发表于 2025-3-22 20:32:52 | 显示全部楼层
A Cartan Decomposition for Non-symmetric Reductive Spherical Pairs of Rank-One Type and Its Applicamposition for non-symmetric reductive pairs, namely, reductive non-symmetric spherical pairs of rank-one type. We also show that the action of some compact group on a non-symmetric reductive spherical homogeneous space of rank-one type is strongly visible.
发表于 2025-3-22 22:48:05 | 显示全部楼层
发表于 2025-3-23 03:57:28 | 显示全部楼层
https://doi.org/10.1007/978-3-030-26562-5representation theory of Lie Groups; geometry; harmonic analysis; homogeneous space; differential geomet
发表于 2025-3-23 06:26:11 | 显示全部楼层
Ali Baklouti,Takaaki NomuraCovers a wide range of the groups with minute descriptions for harmonic analysis, including both semi-simple Lie groups and solvable Lie groups.Includes hot topics presented at the 5th Tunisian-Japane
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 21:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表