找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Structure of High-Dimensional Data and Dimensionality Reduction; Jianzhong Wang Book 2012 Higher Education Press, Beijing and Sp

[复制链接]
楼主: MASS
发表于 2025-3-23 09:43:11 | 显示全部楼层
发表于 2025-3-23 16:03:21 | 显示全部楼层
Fast Algorithms for DR Approximation. In Section 15.2, we present the randomized low rank approximation algorithms. In Section 15.3, greedy lank-revealing algorithms (GAT) and randomized anisotropic transformation algorithms (RAT), which approximate leading eigenvalues and eigenvectors of DR kernels, are introduced. Numerical experime
发表于 2025-3-23 18:53:05 | 显示全部楼层
发表于 2025-3-23 22:12:41 | 显示全部楼层
发表于 2025-3-24 02:37:21 | 显示全部楼层
https://doi.org/10.1057/978-1-137-53792-8 efficient, yet produces sufficient accuracy with a high probability. In Section 7.1, we give a review of Lipschitz embedding. In Section 7.2, we introduce random matrices and random projection algorithms. In Section 7.3, the justification of the validity of random projection is presented in detail.
发表于 2025-3-24 08:00:39 | 显示全部楼层
Jozef Lacko,Ladislav Kusňír,Ivan Slameňn 9.1, we describe the MVU method and the corresponding maximization model. In Section 9.2, we give a brief review of SDP and introduce several popular SDP software packages. The experiments and applications of MVU are included in Section 9.3. The LMVU is discussed in Section 9.4.
发表于 2025-3-24 12:38:44 | 显示全部楼层
https://doi.org/10.1007/978-1-4615-9813-8ensional representation of the patch. An alignment technique is introduced in LTSA to align the local representation to a global one. The chapter is organized as follows. In Section 11.1, we describe the method, paying more attention to the global alignment technique. In Section 11.2, the LTSA algor
发表于 2025-3-24 15:24:42 | 显示全部楼层
发表于 2025-3-24 22:39:51 | 显示全部楼层
发表于 2025-3-25 00:53:41 | 显示全部楼层
Eating Characteristics and Temperament. In Section 15.2, we present the randomized low rank approximation algorithms. In Section 15.3, greedy lank-revealing algorithms (GAT) and randomized anisotropic transformation algorithms (RAT), which approximate leading eigenvalues and eigenvectors of DR kernels, are introduced. Numerical experime
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-22 00:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表