找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Structure of Chemistry-Relevant Graphs; Zigzags and Central Michel-Marie Deza,Mathieu Dutour Sikirić,Mikhail I Book 2015 The Edi

[复制链接]
楼主: 使无罪
发表于 2025-3-23 10:46:35 | 显示全部楼层
Zigzags and Railroads of Spheres , and ,,We consider the zigzag and railroad structures of .-regular plane graphs and, especially, graphs ., i.e., ..-spheres, where ., ., or .. The case . has been treated in previous Chapter.
发表于 2025-3-23 14:32:37 | 显示全部楼层
发表于 2025-3-23 18:48:43 | 显示全部楼层
发表于 2025-3-24 01:58:06 | 显示全部楼层
,Goldberg–Coxeter Construction and Parametrization,In this chapter, we consider parametrization and, especially, one with . complex parameter, i.e., the .. (a generalization of a simplicial subdivision of Dodecahedron considered in [.] and [.]), producing a plane graph from any .- or .-regular plane graph . for integer parameters .. See the main features of .-construction in Table ..
发表于 2025-3-24 05:14:45 | 显示全部楼层
发表于 2025-3-24 10:35:06 | 显示全部楼层
,The Self in Mu’tazilah Thought,-polytopes (see [.]), we generalize the notion of zigzag circuits on complexes and compute the zigzag structure for several interesting families of .-polytopes, including semiregular, regular-faced, Wythoff Archimedean ones, Conway’s .-polytopes, half-cubes, and folded cubes.
发表于 2025-3-24 11:45:00 | 显示全部楼层
Zigzags of Polytopes and Complexes,-polytopes (see [.]), we generalize the notion of zigzag circuits on complexes and compute the zigzag structure for several interesting families of .-polytopes, including semiregular, regular-faced, Wythoff Archimedean ones, Conway’s .-polytopes, half-cubes, and folded cubes.
发表于 2025-3-24 15:36:49 | 显示全部楼层
发表于 2025-3-24 21:06:32 | 显示全部楼层
,The Self in Mu’tazilah Thought,-polytopes (see [.]), we generalize the notion of zigzag circuits on complexes and compute the zigzag structure for several interesting families of .-polytopes, including semiregular, regular-faced, Wythoff Archimedean ones, Conway’s .-polytopes, half-cubes, and folded cubes.
发表于 2025-3-25 01:58:58 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 09:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表