找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Singular Perturbation Theory Beyond the Standard Form; Martin Wechselberger Book 2020 The Editor(s) (if applicable) and The Auth

[复制链接]
楼主: 强烈的愿望
发表于 2025-3-23 12:51:46 | 显示全部楼层
发表于 2025-3-23 15:38:31 | 显示全部楼层
发表于 2025-3-23 20:25:30 | 显示全部楼层
Frontiers in Applied Dynamical Systems: Reviews and Tutorials383610.jpg
发表于 2025-3-24 01:44:42 | 显示全部楼层
发表于 2025-3-24 05:43:12 | 显示全部楼层
发表于 2025-3-24 07:19:26 | 显示全部楼层
Martin WechselbergerFirst of its kind to discuss geometric singular perturbation theory in a coordinate-independent setting.Serves as an accessible entry point into the study of multiple time-scale dynamical systems.Cove
发表于 2025-3-24 11:48:52 | 显示全部楼层
发表于 2025-3-24 18:41:05 | 显示全部楼层
This chapter is devoted to present a geometric approach to singular perturbation theory for ordinary differential equations. The material is based on Fenichel’s seminal work on . with a particular emphasis on his coordinate-independent approach (see [.], Sections 5–9).
发表于 2025-3-24 19:55:39 | 显示全部楼层
As mentioned in the previous chapter, the local dynamics near regular jump points indicate one possibility for solutions of a general singular perturbation problem (.), respectively, (.) to switch from slow to fast dynamics (or vice versa) which is key for any global relaxation oscillatory behaviour.
发表于 2025-3-25 01:55:10 | 显示全部楼层
Developments in Transport StudiesFinally, we briefly mention a few selected topics on GSPT that have not been covered in this manuscript. This list of topics is non-inclusive—it is an author’s choice (like all topics covered in this manuscript).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 17:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表