找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Representation Theory and Gauge Theory; Cetraro, Italy 2018 Alexander Braverman,Michael Finkelberg,Alexei Oblo Book 2019 Springer

[复制链接]
查看: 14478|回复: 35
发表于 2025-3-21 16:19:54 | 显示全部楼层 |阅读模式
书目名称Geometric Representation Theory and Gauge Theory
副标题Cetraro, Italy 2018
编辑Alexander Braverman,Michael Finkelberg,Alexei Oblo
视频video
概述Provides an update on the current state of research in some key areas of geometric representation theory and gauge theory.Features lectures authored by leading researchers in the area.Each lecture is
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Geometric Representation Theory and Gauge Theory; Cetraro, Italy 2018 Alexander Braverman,Michael Finkelberg,Alexei Oblo Book 2019 Springer
描述.This book offers a review of the vibrant areas of geometric representation theory and gauge theory, which are characterized by a merging of traditional techniques in representation theory with the use of powerful tools from algebraic geometry, and with strong inputs from physics. The notes are based on lectures delivered at the CIME school "Geometric Representation Theory and Gauge Theory" held in Cetraro, Italy, in June 2018. They comprise three contributions, due to Alexander Braverman and Michael Finkelberg, Andrei Negut, and Alexei Oblomkov, respectively. Braverman and Finkelberg’s notes review the mathematical theory of the Coulomb branch of 3D N=4 quantum gauge theories. The purpose of Negut’s notes is to study moduli spaces of sheaves on a surface, as well as Hecke correspondences between them. Oblomkov‘s notes concern matrix factorizations and knot homology. This book will appeal to both mathematicians and theoretical physicists and will be a source of inspiration forPhD students and researchers. .
出版日期Book 2019
关键词Braid Groups and Markov Trace; Coulomb Branch of Quantum Gauge Theories; Hecke Correspondences Between
版次1
doihttps://doi.org/10.1007/978-3-030-26856-5
isbn_softcover978-3-030-26855-8
isbn_ebook978-3-030-26856-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Geometric Representation Theory and Gauge Theory影响因子(影响力)




书目名称Geometric Representation Theory and Gauge Theory影响因子(影响力)学科排名




书目名称Geometric Representation Theory and Gauge Theory网络公开度




书目名称Geometric Representation Theory and Gauge Theory网络公开度学科排名




书目名称Geometric Representation Theory and Gauge Theory被引频次




书目名称Geometric Representation Theory and Gauge Theory被引频次学科排名




书目名称Geometric Representation Theory and Gauge Theory年度引用




书目名称Geometric Representation Theory and Gauge Theory年度引用学科排名




书目名称Geometric Representation Theory and Gauge Theory读者反馈




书目名称Geometric Representation Theory and Gauge Theory读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:14:39 | 显示全部楼层
0075-8434 atrix factorizations and knot homology. This book will appeal to both mathematicians and theoretical physicists and will be a source of inspiration forPhD students and researchers. .978-3-030-26855-8978-3-030-26856-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-22 03:01:43 | 显示全部楼层
Coulomb Branches of 3-Dimensional Gauge Theories and Related Structures, we review the constructions and results of Braverman et al. (Adv Theor Math Phys 22(5):1017–1147, 2018; Adv Theor Math Phys 23(1):75–166, 2019; Adv Theor Math Phys 23(2):253–344, 2019) where a mathematical definition of Coulomb branches of 3d . = 4 quantum gauge theories (of cotangent type) is give
发表于 2025-3-22 06:25:20 | 显示全部楼层
发表于 2025-3-22 09:54:52 | 显示全部楼层
发表于 2025-3-22 15:21:04 | 显示全部楼层
Coulomb Branches of 3-Dimensional Gauge Theories and Related Structures,heor Math Phys 23(2):253–344, 2019) where a mathematical definition of Coulomb branches of 3d . = 4 quantum gauge theories (of cotangent type) is given, and also present a framework for studying some further mathematical structures (e.g. categories of line operators in the corresponding topologically twisted theories) related to these theories.
发表于 2025-3-22 18:06:05 | 显示全部楼层
发表于 2025-3-22 23:59:07 | 显示全部楼层
发表于 2025-3-23 02:03:55 | 显示全部楼层
发表于 2025-3-23 06:18:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 09:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表