用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Quantization and Quantum Mechanics; Jȩdrzej Śniatycki Book 1980 Springer-Verlag New York Inc. 1980 Quantenmechanik.Quantisierung

[复制链接]
查看: 17370|回复: 49
发表于 2025-3-21 16:58:28 | 显示全部楼层 |阅读模式
书目名称Geometric Quantization and Quantum Mechanics
编辑Jȩdrzej Śniatycki
视频video
丛书名称Applied Mathematical Sciences
图书封面Titlebook: Geometric Quantization and Quantum Mechanics;  Jȩdrzej Śniatycki Book 1980 Springer-Verlag New York Inc. 1980 Quantenmechanik.Quantisierung
描述This book contains a revised and expanded version of the lecture notes of two seminar series given during the academic year 1976/77 at the Department of Mathematics and Statistics of the University of Calgary, and in the summer of 1978 at the Institute of Theoretical Physics of the Technical University Clausthal. The aim of the seminars was to present geometric quantization from the point of view· of its applica­ tions to quantum mechanics, and to introduce the quantum dynamics of various physical systems as the result of the geometric quantization of the classical dynamics of these systems. The group representation aspects of geometric quantiza­ tion as well as proofs of the existence and the uniqueness of the introduced structures can be found in the expository papers of Blattner, Kostant, Sternberg and Wolf, and also in the references quoted in these papers. The books of Souriau (1970) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech­ anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum me
出版日期Book 1980
关键词Quantenmechanik; Quantisierung; Quantization; Theoretical physics; quantum mechanics
版次1
doihttps://doi.org/10.1007/978-1-4612-6066-0
isbn_softcover978-0-387-90469-6
isbn_ebook978-1-4612-6066-0Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer-Verlag New York Inc. 1980
The information of publication is updating

书目名称Geometric Quantization and Quantum Mechanics影响因子(影响力)




书目名称Geometric Quantization and Quantum Mechanics影响因子(影响力)学科排名




书目名称Geometric Quantization and Quantum Mechanics网络公开度




书目名称Geometric Quantization and Quantum Mechanics网络公开度学科排名




书目名称Geometric Quantization and Quantum Mechanics被引频次




书目名称Geometric Quantization and Quantum Mechanics被引频次学科排名




书目名称Geometric Quantization and Quantum Mechanics年度引用




书目名称Geometric Quantization and Quantum Mechanics年度引用学科排名




书目名称Geometric Quantization and Quantum Mechanics读者反馈




书目名称Geometric Quantization and Quantum Mechanics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:18:51 | 显示全部楼层
Book 1980) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech­ anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum me
发表于 2025-3-22 02:08:30 | 显示全部楼层
Introduction, a Hilbert space . of quantum states and defines a map . from a subset of the Poisson algebra to the space of symmetric operators on .. The domain of . consists of all “.-quantizable” functions. The definition of . requires some additional structure on the phase space. The functions which generate o
发表于 2025-3-22 05:19:28 | 显示全部楼层
发表于 2025-3-22 09:55:06 | 显示全部楼层
Representation Space,mplete set of commuting observables. In the process of quantization, however, one has only the classical phase space (X, ω) to work with, and one has to find a suitable classical counterpart of the notion of a complete set of commuting observables. A natural choice is a set of n = 1/2dim X functions
发表于 2025-3-22 16:43:05 | 显示全部楼层
发表于 2025-3-22 20:37:01 | 显示全部楼层
Other Representations,nctions gives rise to the Schrödinger representation. The momentum representation corresponds to the polarization spanned by the Hamiltonian vector fields of the momentum variables. The Blattner-Kostant-Sternberg kernel between these representations reduces to the Fourier transform. In this chapter,
发表于 2025-3-22 21:42:31 | 显示全部楼层
,Time-Dependent Schrödinger Equation,extended to evolution space yields an intrinsic quantum theory equivalent to that based on the time-dependent Schrödinger equation. We restrict our attention to the quantum mechanics of a single particle with a time-dependent potential.
发表于 2025-3-23 04:14:41 | 显示全部楼层
Relativistic Dynamics in an Electromagnetic Field,re Y is the space-time manifold, Л: .Y → Y is the cotangent bundle projection, and .[cf. Sec. 2.3]. Assuming that Y is orientable, and following the reasoning of Sec. 7.2 leading to a metaplectic structure on (.Ydθ.), we obtain a metaplectic structure on (.Y,ω.). The vertical distribution D on .Y ta
发表于 2025-3-23 07:57:38 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 08:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表