找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Properties for Parabolic and Elliptic PDE‘s; GPPEPDEs, Palinuro, Filippo Gazzola,Kazuhiro Ishige,Paolo Salani Conference proceed

[复制链接]
查看: 24241|回复: 53
发表于 2025-3-21 20:08:39 | 显示全部楼层 |阅读模式
书目名称Geometric Properties for Parabolic and Elliptic PDE‘s
副标题GPPEPDEs, Palinuro,
编辑Filippo Gazzola,Kazuhiro Ishige,Paolo Salani
视频video
概述Collects recent research papers by respected experts in the field.Discusses the geometric properties of solutions of parabolic and elliptic PDEs in their broader sense.Interacts with many other areas
丛书名称Springer Proceedings in Mathematics & Statistics
图书封面Titlebook: Geometric Properties for Parabolic and Elliptic PDE‘s; GPPEPDEs, Palinuro,  Filippo Gazzola,Kazuhiro Ishige,Paolo Salani Conference proceed
描述.This book collects recent research papers by respected specialists in the field. It presents advances in the field of geometric properties for parabolic and elliptic partial differential equations, an area that has always attracted great attention. It settles the basic issues (existence, uniqueness, stability and regularity of solutions of initial/boundary value problems) before focusing on the topological and/or geometric aspects. These topics interact with many other areas of research and rely on a wide range of mathematical tools and techniques, both analytic and geometric. The Italian and Japanese mathematical schools have a long history of research on PDEs and have numerous active groups collaborating in the study of the geometric properties of their solutions. .
出版日期Conference proceedings 2016
关键词Discrete geometry; Geometric properties; PDE; Parabolic and elliptic partial differential equations; Qua
版次1
doihttps://doi.org/10.1007/978-3-319-41538-3
isbn_softcover978-3-319-82379-9
isbn_ebook978-3-319-41538-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

书目名称Geometric Properties for Parabolic and Elliptic PDE‘s影响因子(影响力)




书目名称Geometric Properties for Parabolic and Elliptic PDE‘s影响因子(影响力)学科排名




书目名称Geometric Properties for Parabolic and Elliptic PDE‘s网络公开度




书目名称Geometric Properties for Parabolic and Elliptic PDE‘s网络公开度学科排名




书目名称Geometric Properties for Parabolic and Elliptic PDE‘s被引频次




书目名称Geometric Properties for Parabolic and Elliptic PDE‘s被引频次学科排名




书目名称Geometric Properties for Parabolic and Elliptic PDE‘s年度引用




书目名称Geometric Properties for Parabolic and Elliptic PDE‘s年度引用学科排名




书目名称Geometric Properties for Parabolic and Elliptic PDE‘s读者反馈




书目名称Geometric Properties for Parabolic and Elliptic PDE‘s读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:38:26 | 显示全部楼层
发表于 2025-3-22 03:34:34 | 显示全部楼层
发表于 2025-3-22 06:30:39 | 显示全部楼层
A Remark on an Overdetermined Problem in Riemannian Geometry, a bounded domain, with ., and consider the problem . with ., where . is the .-Laplacian of .. We prove that if the normal derivative . of . along the boundary of . is a function of . satisfying suitable conditions, then . must be a geodesic ball. In particular, our result applies to open balls of .
发表于 2025-3-22 08:49:21 | 显示全部楼层
,A Note on the Scale Invariant Structure of Critical Hardy Inequalities,nder term of the critical Hardy inequality which is characterized by the ratio with or the distance from the “virtual minimizer” for the associated variational problem. We also focus on the scale invariance property of the inequality under power-type scaling and investigate the iterated scaling stru
发表于 2025-3-22 14:09:50 | 显示全部楼层
发表于 2025-3-22 20:29:56 | 显示全部楼层
发表于 2025-3-22 22:24:43 | 显示全部楼层
发表于 2025-3-23 04:24:10 | 显示全部楼层
Eastern Europe and the Euro AreaWe consider an overdetermined problem arising in potential theory for the capacitary potential and we prove a radial symmetry result.
发表于 2025-3-23 09:06:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 15:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表