找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Phases in Classical and Quantum Mechanics; Dariusz Chruściński,Andrzej Jamiołkowski Textbook 2004 Springer Science+Business Medi

[复制链接]
查看: 55946|回复: 35
发表于 2025-3-21 18:05:59 | 显示全部楼层 |阅读模式
书目名称Geometric Phases in Classical and Quantum Mechanics
编辑Dariusz Chruściński,Andrzej Jamiołkowski
视频video
概述Several well-established geometric and topological methods are used in this work.Examines geometric phases bringing together different physical phenomena under a unified mathematical scheme.Material h
丛书名称Progress in Mathematical Physics
图书封面Titlebook: Geometric Phases in Classical and Quantum Mechanics;  Dariusz Chruściński,Andrzej Jamiołkowski Textbook 2004 Springer Science+Business Medi
描述.This work examines the beautiful and important physical concept known as the ‘geometric phase,‘ bringing together different physical phenomena under a unified mathematical and physical scheme. ...Several well-established geometric and topological methods underscore the mathematical treatment of the subject, emphasizing a coherent perspective at a rather sophisticated level. What is unique in this text is that both the quantum and classical phases are studied from a geometric point of view, providing valuable insights into their relationship that have not been previously emphasized at the textbook level. ...Key Topics and Features: ...• Background material presents basic mathematical tools on manifolds and differential forms. ...• Topological invariants (Chern classes and homotopy theory) are explained in simple and concrete language, with emphasis on physical applications. ...• Berry‘s adiabatic phase and its generalization are introduced. ...• Systematic exposition treats different geometries (e.g., symplectic and metric structures) living on a quantum phase space, in connection with both abelian and nonabelian phases. ...• Quantum mechanics is presented as classical Hamiltonian
出版日期Textbook 2004
关键词Chern class; Homotopy; Matrix; classical mechanics; classical/quantum mechanics; differential geometry; ho
版次1
doihttps://doi.org/10.1007/978-0-8176-8176-0
isbn_softcover978-1-4612-6475-0
isbn_ebook978-0-8176-8176-0Series ISSN 1544-9998 Series E-ISSN 2197-1846
issn_series 1544-9998
copyrightSpringer Science+Business Media New York 2004
The information of publication is updating

书目名称Geometric Phases in Classical and Quantum Mechanics影响因子(影响力)




书目名称Geometric Phases in Classical and Quantum Mechanics影响因子(影响力)学科排名




书目名称Geometric Phases in Classical and Quantum Mechanics网络公开度




书目名称Geometric Phases in Classical and Quantum Mechanics网络公开度学科排名




书目名称Geometric Phases in Classical and Quantum Mechanics被引频次




书目名称Geometric Phases in Classical and Quantum Mechanics被引频次学科排名




书目名称Geometric Phases in Classical and Quantum Mechanics年度引用




书目名称Geometric Phases in Classical and Quantum Mechanics年度引用学科排名




书目名称Geometric Phases in Classical and Quantum Mechanics读者反馈




书目名称Geometric Phases in Classical and Quantum Mechanics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:57:13 | 显示全部楼层
Textbook 2004adiabatic phase and its generalization are introduced. ...• Systematic exposition treats different geometries (e.g., symplectic and metric structures) living on a quantum phase space, in connection with both abelian and nonabelian phases. ...• Quantum mechanics is presented as classical Hamiltonian
发表于 2025-3-22 01:17:53 | 显示全部楼层
1544-9998 ifferent geometries (e.g., symplectic and metric structures) living on a quantum phase space, in connection with both abelian and nonabelian phases. ...• Quantum mechanics is presented as classical Hamiltonian 978-1-4612-6475-0978-0-8176-8176-0Series ISSN 1544-9998 Series E-ISSN 2197-1846
发表于 2025-3-22 05:01:25 | 显示全部楼层
发表于 2025-3-22 10:41:54 | 显示全部楼层
https://doi.org/10.1007/978-3-540-75736-8unt dynamical effects but in the limit of infinitely slow changes. That is, the system is no longer static but its evolution is “infinitely slow.” A typical situation where one applies adiabatic ideas is when a physical system may be divided into two subsystems with completely different time scales:
发表于 2025-3-22 14:39:35 | 显示全部楼层
发表于 2025-3-22 17:14:38 | 显示全部楼层
发表于 2025-3-23 00:49:33 | 显示全部楼层
https://doi.org/10.1007/978-3-662-64457-7What could be a classical analog of the quantum geometric phase? An obvious candidate, which is even called a phase, is the phase of harmonic motion:
发表于 2025-3-23 01:28:54 | 显示全部楼层
https://doi.org/10.1007/978-3-642-18600-4Suppose that (., Ω) is a symplectic manifold and let . be a Lie group acting from the left on .by canonical transformations. That is, there is a mapping . such that for any . ∈ ., . defined by Φ. = Φ(., ·), is a canonical transformation:
发表于 2025-3-23 07:00:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 23:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表