找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 2006Latest edition Springer-Verlag

[复制链接]
查看: 26490|回复: 57
发表于 2025-3-21 16:14:12 | 显示全部楼层 |阅读模式
书目名称Geometric Numerical Integration
副标题Structure-Preserving
编辑Ernst Hairer,Gerhard Wanner,Christian Lubich
视频video
丛书名称Springer Series in Computational Mathematics
图书封面Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 2006Latest edition Springer-Verlag
描述.Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches. The second edition is substantially revised and enlarged, with many improvements in the presentation and additions concerning in particular non-canonical Hamiltonian systems, highly oscillatory mechanical systems, and the dynamics of multistep methods..
出版日期Book 2006Latest edition
关键词Hamiltonian and reversible systems; Numerical integration; algorithms; calculus; differential equations
版次2
doihttps://doi.org/10.1007/3-540-30666-8
isbn_softcover978-3-642-05157-9
isbn_ebook978-3-540-30666-5Series ISSN 0179-3632 Series E-ISSN 2198-3712
issn_series 0179-3632
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

书目名称Geometric Numerical Integration影响因子(影响力)




书目名称Geometric Numerical Integration影响因子(影响力)学科排名




书目名称Geometric Numerical Integration网络公开度




书目名称Geometric Numerical Integration网络公开度学科排名




书目名称Geometric Numerical Integration被引频次




书目名称Geometric Numerical Integration被引频次学科排名




书目名称Geometric Numerical Integration年度引用




书目名称Geometric Numerical Integration年度引用学科排名




书目名称Geometric Numerical Integration读者反馈




书目名称Geometric Numerical Integration读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:42:42 | 显示全部楼层
发表于 2025-3-22 01:52:39 | 显示全部楼层
https://doi.org/10.1007/3-540-30666-8Hamiltonian and reversible systems; Numerical integration; algorithms; calculus; differential equations
发表于 2025-3-22 06:30:54 | 显示全部楼层
Common Problem Areas and Solutions,Hamiltonian systems form the most important class of ordinary differential equations in the context of ‘Geometric Numerical Integration’. An outstanding property of these systems is the symplecticity of the flow. As indicated in the following diagram
发表于 2025-3-22 12:03:19 | 显示全部楼层
Siân Adiseshiah,Jacqueline BoltonWe discuss theoretical properties and the structure-preserving numerical treatment of Hamiltonian systems on manifolds and of the closely related class of Poisson systems.We present numerical integrators for problems from classical and quantum mechanics.
发表于 2025-3-22 16:16:12 | 显示全部楼层
,Exposition: Identität(s)Brocken,One of the greatest virtues of backward analysis. is that when it is the appropriate form of analysis it tends to be very markedly superior to forward analysis. Invariably in such cases it has remarkable formal simplicity and gives deep insight into the stability (or lack of it) of the algorithm.
发表于 2025-3-22 19:00:41 | 显示全部楼层
发表于 2025-3-22 22:08:55 | 显示全部楼层
发表于 2025-3-23 01:29:37 | 显示全部楼层
Non-Canonical Hamiltonian Systems,We discuss theoretical properties and the structure-preserving numerical treatment of Hamiltonian systems on manifolds and of the closely related class of Poisson systems.We present numerical integrators for problems from classical and quantum mechanics.
发表于 2025-3-23 06:44:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 17:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表