找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 20021st edition Springer-Verlag Ber

[复制链接]
楼主: 渗漏
发表于 2025-3-23 10:13:29 | 显示全部楼层
发表于 2025-3-23 16:58:14 | 显示全部楼层
Highly Oscillatory Differential Equations,new complete function evaluation only after a time step over one or many periods of the fastest oscillations in the system. Various such methods have been proposed in the literature some of them decades ago, some very recently, motivated by problems from molecular dynamics, astrophysics and nonlinea
发表于 2025-3-23 20:03:51 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-6326-1In this chapter we study the long-time behaviour of symplectic integrators, combining backward error analysis and the perturbation theory of integrable Hamiltonian systems.
发表于 2025-3-23 23:15:57 | 显示全部楼层
发表于 2025-3-24 03:54:23 | 显示全部楼层
发表于 2025-3-24 08:07:30 | 显示全部楼层
Dynamics of Multistep Methods,Multistep methods are the basis of important codes for nonstiff differential equations (Adams methods) and for stiff problems (BDF methods). We study here their applicability to long-time integrations of Hamiltonian or reversible systems.
发表于 2025-3-24 11:53:38 | 显示全部楼层
发表于 2025-3-24 18:35:45 | 显示全部楼层
发表于 2025-3-24 22:17:44 | 显示全部楼层
Further Topics in Structure Preservation,ed in Chap. VI. In particular we study symmetric and symplectic methods for constrained Hamiltonian systems, we present Poisson integrators for Hamiltonian problems with a non-standard structure matrix, and we give volume-preserving algorithms for divergence-free differential equations that are not necessarily Hamiltonian systems.
发表于 2025-3-25 01:18:00 | 显示全部楼层
Structure-Preserving Implementation,not deteriorate the correct qualitative behaviour of the solution. We study multiple time stepping strategies, the effect of round-off in long-time integrations, and the efficient solution of nonlinear systems arising in implicit integration schemes.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 20:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表