找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Modelling; Dagstuhl 1996 Gerald Farin,Hanspeter Bieri,Tony Rose Conference proceedings 1998 Springer-Verlag Wien 1998 CAD/CAM.Com

[复制链接]
楼主: encroach
发表于 2025-3-26 23:04:38 | 显示全部楼层
发表于 2025-3-27 03:12:18 | 显示全部楼层
发表于 2025-3-27 06:02:11 | 显示全部楼层
Industrie- und Handelskammer in Wien data. We show how to build an isocurve through any point and how to choose which isocurves are computed. The isocurves are used to build a tensor product surface for each component of the model isomorphic to a cylinder.
发表于 2025-3-27 11:06:39 | 显示全部楼层
,Nach der Versammlung – das Protokoll,rmally. The curves are defined in Bézier form. In this paper the approximation is extended to B-Spline curves that generate near-conformal maps. It is then applied to approximating and animating ideal fluid flows. The B-spline curve underpins the design approach. With it an interface is developed to
发表于 2025-3-27 14:48:01 | 显示全部楼层
Renker K. Weiss,Jelka Lavrih Sztajnbokpose two (2) discrete approaches for removing shape failures from such surfaces, without altering them more than is needed. The second approach is a simple Quadratic-Programming method, that is suitable for restoring the shape of almost shape-preserving tensor-product B-spline surfaces. The performa
发表于 2025-3-27 21:14:03 | 显示全部楼层
https://doi.org/10.1007/978-3-662-68365-1terpolating curves with a desired shape. These regions are defined for special types of curves called coils, which are non-strict versions of curves of geometric order three in three dimensions. We establish that the fill-in regions are a set of tetrahedra and show how they must be restricted to for
发表于 2025-3-27 22:24:18 | 显示全部楼层
,Haben Kristalle magische Kräfte?,software based on tensor-product patches, the particular scheme in [.] is expressed in terms of linearly-trimmed bicubic patches. Explicit formulas relating the coefficients of the patches to the vertices of an arbitrary input polyhedron are given. Four of these patches can be grouped together into
发表于 2025-3-28 02:48:13 | 显示全部楼层
发表于 2025-3-28 08:42:40 | 显示全部楼层
发表于 2025-3-28 10:43:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 06:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表