找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Methods in Physics XXXVIII; Workshop, Białowieża Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2020 Th

[复制链接]
楼主: sustained
发表于 2025-3-28 17:30:11 | 显示全部楼层
发表于 2025-3-28 20:17:45 | 显示全部楼层
Motiur Rahman,Noriatsu Matsui,Yukio IkemotoWe review the theory of Toeplitz extensions and their role in operator .-theory, including Kasparov’s bivariant .-theory. We then discuss the recent applications of Toeplitz algebras in the study of solid-state systems, focusing in particular on the bulk-edge correspondence for topological insulators.
发表于 2025-3-29 00:46:09 | 显示全部楼层
发表于 2025-3-29 04:39:33 | 显示全部楼层
Comments on Mechanisms of Release,In this paper we study one-point rank one commutative rings of difference operators. We find conditions on spectral data which specify such operators with periodic coefficients.
发表于 2025-3-29 07:27:39 | 显示全部楼层
Dynamics of Rotors and FoundationsWe report on the trigonometric spin Ruijsenaars–Sutherland hierarchy derived recently by Poisson reduction of a bi-Hamiltonian hierarchy associated with free geodesic motion on the Lie group U(.). In particular, we give a direct proof of a previously stated result about the form of the second Poisson bracket in terms of convenient variables.
发表于 2025-3-29 14:30:52 | 显示全部楼层
Dynamics of Science-Based InnovationWe describe sufficient maximality conditions for the classes of graph surfaces on two-step Carnot groups with sub-Lorentzian structure. In particular, we introduce a non-holonomic notion of variation of the area functional.
发表于 2025-3-29 16:29:48 | 显示全部楼层
https://doi.org/10.1007/978-3-540-88831-4We consider certain degenerations of trigonal curves and hyperelliptic curves, which we call one step degeneration. We compute the limits of corresponding quasi-periodic solutions using the Sato Grassmannian. The mixing of solitons and quasi-periodic solutions is clearly visible in the obtained solutions.
发表于 2025-3-29 23:18:09 | 显示全部楼层
发表于 2025-3-30 03:37:27 | 显示全部楼层
发表于 2025-3-30 06:40:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 08:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表