找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Methods in PDE’s; Giovanna Citti,Maria Manfredini,Francesco Uguzzoni Conference proceedings 2015 Springer International Publishi

[复制链接]
楼主: 添加剂
发表于 2025-3-30 10:34:32 | 显示全部楼层
Srinivasan Arjun Tekalur,Arun Shuklaent estimates for non-negative solutions of (1) in the spirit of a 2005 paper by Yan Yan Li and Louis Nirenberg. The second part of the note focuses on entire solutions of (1) with semilinear term . satisfying a Keller-Osserman type integrability condition.
发表于 2025-3-30 12:40:01 | 显示全部楼层
Conference proceedings 2015heir discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications. .
发表于 2025-3-30 16:36:12 | 显示全部楼层
发表于 2025-3-30 22:31:26 | 显示全部楼层
发表于 2025-3-31 01:54:35 | 显示全部楼层
A Quantitative Lusin Theorem for Functions in BV,at least one point of .. In this note we follow the proof given in the Appendix of DiBenedetto and Vespri (Arch. Ration. Mech. Anal. ., 247–309, 1995) so we are able to use only a 1-dimensional Poincaré inequality.
发表于 2025-3-31 06:44:46 | 显示全部楼层
发表于 2025-3-31 12:34:42 | 显示全部楼层
,,-Parabolic Regularity and Non-degenerate Ornstein-Uhlenbeck Type Operators,appearing in such estimates from the parabolicity constant. The proof requires the use of the stochastic integral when . is different from 2. Finally we extend our estimates to parabolic equations involving non-degenerate Ornstein-Uhlenbeck type operators.
发表于 2025-3-31 16:13:59 | 显示全部楼层
,A Few Recent Results on Fully Nonlinear PDE’s,ent estimates for non-negative solutions of (1) in the spirit of a 2005 paper by Yan Yan Li and Louis Nirenberg. The second part of the note focuses on entire solutions of (1) with semilinear term . satisfying a Keller-Osserman type integrability condition.
发表于 2025-3-31 18:51:15 | 显示全部楼层
发表于 2025-4-1 01:31:06 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 09:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表